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 by Rudolf Kaehr

ThinkArt Lab Glasgow April 2005

 

Interactivity is all there is to write about: 

It is the Paradox and 

the Horizon of Realization."

 

Sketch of a new programming paradigm for epistemologically complex and dynam-
ic situations. 

 

ConTeXtures

 

 risks a start with the insight of the relevancy of textuality in
contrast to name- and statement-based approaches and the necessity of a multitude of
logically and computationally relevant viewpoints in modelling and programming com-
plexity. 

 

ConTeXtures

 

 are understood as a distribution and mediation of classical pro-
gramming paradigms. Complexity is thematized as a constellation of interactivity and
reflectionality which is not reducible to a single, mono-contextural, logico-computation-
al process-oriented approach. 

 

ConTeXtures

 

 are developed for conceptual programing and computational reality
construction. Also it is not excluded, real-world problem solving is not yet in the main
focus of this introduction to ConTeXtures.

 

ConTeXtures’

 

 emphasis is on interactionality/reflectionality is in a strong complemen-
tarity to the guiding philosophy of abstraction as it is proclaimed in the famous state-
ment of Guy L. Steels 

 

"Abstraction is all there is to talk about: it is the object and the
means of discussion."

 

 

 

*Sponsored by the German Software ThinkTank 

 

ALGoLL AG

 

, Munich, Germany.



 

Introduction

 

The aim of this text is to give a short introduction of the idea of polycontexturality
and a sketch of mapping the programming paradigm and apparatus of the Lamb-
da Calculus based A++ (ARS) (Georg Loczewski) onto polycontextural structures
and strategies. Polycontexturality is not used a new singular meta-concept to deal
with multi-centred complexity, but as a complexity in itself, which is realized as an
interplay of its autonomous aspects involving the facets of multi-/dis-/trans-/poly-
contexturality. The result will be a sketch of a new way of programming called 

 

Con-
TeXtures

 

 which is build by a multitude of mediated classical Lambda Calculi dis-
tributed hierarchically in relation to reflectional and heterarchically in relation to
interactional thematizations. As a notational system, also to visualize the concep-
tuality, the polycontextural 

 

matrix

 

 and its interpretation by the 

 

bracket

 

 method is
introduced. The name 

 

ConTeXtures

 

 is based on contextures and inter-textual the-
matizations and the X of chiasm (proemial relationship).

 

Contents

 

1. The study gives a new introduction to the theory of polycontexturality empha-
sizing especially the features of reflectionality and interactivity between contex-
tures building a general matrix of polycontexturality.

2. This polycontextural matrix gets a step wise concretization through a mapping
of the programming paradigm A++ (ARS) onto it. This is producing a general the-
ory of disseminated programming languages. The steps of modelling, producing
the general tectonics of ConTeXtures, will be a mapping from 

 

Matrix

 

 to 

 

Templates

 

to 

 

Patterns

 

 to 

 

Configurations

 

 to 

 

Constellations

 

.
3. Some new features of ConTeXtures, developed by the strategy of the 

 

"heter-
archic cut"

 

,  are introduced along the lines of prototypical applications of the top-
ics (data types, sorts) and programming styles. This will include an example of
heterarchy for OOP, distributed reflection for reflectional programming, heterar-
chic parallelism for symbolic and functional programming, and others. 

4. Philosophical and grammatological backgrounds of ConTeXtures will be
sketched and contrasted to the logocentric foundations of the Lambda Calculus,
esp. in its form as ARS. More can be found in SKIZZE-0.9.5 (german) and DERRI-
DA’S MACHINES (english).

Other names for 

 

ConTeXtures

 

: poly-A++, poly-ARS, SAMBA’S.

 

Historical Remarks

 

ConTeXtures

 

 are a further specification of the approaches proposed in SKIZZE-
0.9.5 and DERRIDA’S MACHINES, PART I/II and are published as DERRIDA’S MA-
CHINES PART III. I started this work on 

 

ConTeXtures

 

 just after having finished the
"funky" collage/montage/sabotage SUSHI’S LOGICS at the end of 2004 where
I mentioned the work of Georg Loczewski on his A++ (ARS). The main ideas to
ConTeXtures goes back to 1986 when I tried to develop a 

 

trans-FORTH

 

 language
for combined FORTH processor systems, later TRANSPUTERS, for modelling "living
systems" supported by the Stiftung Volkswagen, Hannover, Germany. But failed to
get further funding for this research. The project to develop a framework of 

 

Dynam-
ic Semantic Web

 

 lost its funding, too. The interesting perspectives opened up there
may have found a further realization in the framework of the non-funded anti-foundation-
al paradigm of ConTeXtures.
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A. Designing ConTeXtures

 

1   General Model of Polycontexturality

 

architextures  enfold and unwrap spaces. As their outside, they constitute space itself.
Though a-topic, architextures are the indispensable material counterpart to the immateriality
of space. architextures are involved in the formation of all social, historical and cultural
spaces. Sometimes as their hidden infrastructure, as the invisible order of signification;
sometimes as their utmost visible dimension, as their bi-dimensional interface: architextures
are essentially “textures”, the weaved fabric of lines and voids, layers and surfaces. To fol-
low the sinuous folds of these swathes, an archaeology of another kind is needed, an ar-
cheology of synchronism dealing with both past and present, an archeology of “synopsism”
contemplating both surfaces and grounds.
http://www.atopiaonline.de/architex/architex.htm

Skizze eines Gewebes rechnender Räume in denkender Leere.
http://www.thinkartlab.com/pkl/media/SKIZZE-0.9.5-Prop-book.pdf

 Diagramm  1 Single cognitive system

ConTeXtures are realizing the idea of thematization in developing a paradigm of a
new programming system understood as a dissemination of classical paradigms. Pro-
gramming languages based on the Lambda Calculus

Programming languages based on the
Lambda Calculus are founded in the
idea of abstraction and realized by the
basic operator of selection. ConTeXtures
are disseminating this idea and tech-
niques as a step to realize the idea of
thematization and its basic operators of
elections of Lambda Calculus based lan-
guages.

Architectonics

Reflectionality                                 Interactivity

Positionality

1

Lambda Calculus

   

 
ConTeXures

Abstraction             Thematizations

 selector                    (s)electors

http://www.atopiaonline.de/architex/architex.htm
http://www.thinkartlab.com/pkl/media/
http://www.thinkartlab.com/pkl/media/SKIZZE-0.9.5-Prop-book.pdf


B. General Stratagemes of 
ConTeXtures

2   Design approach

sketch-horizons: The operator samba is sketching or designing the horizon
of the computational constellation, that is, the general structure of the evoqued tex-
tuality under consideration. Its complexity is given first by the positive number m:
samba(m). Second, it may also include the very fundamental structure or pattern of
the horizon. It is crucial to know how the fundament of the architectonic is con-
ceived or build. Its graph-combinatorics can be a constellation from a linear to a
star order. Designing a horizon of programming is realizing the demand for reality
construction by programming as a stronger approach than problem solving.

design-architectures: The super-operators are defining the interplay between
different contextures of the designed scenario. The main modi of this interplay are
interactivity and reflectionality and locally iterativity (computations). Other dimen-
sions, like intervention and anticipation, are possible, but are not explicitly includ-
ed in this sketch.

thematize-scenarios: styles: The different programming styles or paradigms,
distributed over the mediated contextures, have to be addressed. The styles can be
in a mono- or poly-style constellation. Styles are the paradigms of functional, im-
perative, object-oriented, contextural and reflectional programming.

 topics: The different operators, distributed over the mediated contextures, have
to by thematized, taken into consideration. The operation thematize is defining the
topics (mono- and poly-topics) to be brought into the scope of programming.

identify-contextures: Single contextures with and without interactive and re-
flectional connections to other intra- and trans-contextures are focussed. Identify-
contextures is a function which is decomposing the complexity of the polycontex-
tural situation given by the thematizing operation into its intra- and trans-contextur-
al parts or modules. To each isolated or interacting contexture corresponds intra-
contexturally a Lambda Calculus based ARS system inheriting the reflectional and
interactional distribution of the contextures.

local ARS systems:
define-operations: Define <Name of Abstraction>
abstract-functions: lambda <List of Parameters>
propose-statements: {Statements}

sketch horizon

build architectures

thema

m−

−

( )  
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identify contextures
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−
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3   Operational approach

samba (architectonics (reflectionality (interactivity 
                                           (define (lambda (statements )))))
samba:
the general epistemic activity  ("abstraction") of thematizing the world under consid-

eration. Thematizing happens as plurality, there are always a multitude of viewpoints
of thematizing. These viewpoints which opens up contextures are not isolated events,
they are interacting and being together, they are mediated and the rules how to move
from one point of view to another have to be given.

Thus samba is the operator of thematizing mediated complexity, that is, polycontex-
turality. The general rules of polycontexturality are introduced by the proemial relation-
ship. SAMBA’S as a dynamic programming (con)texture is involving operators of
evolution and emanation, EVOL and EMAN, to model structures of "living tissue". In
this study we are considering only stable systems, that is, EVOL and EMAN are, at the
time, not applied. Samba is opening up the horizon of thematization. It has the function
of an epistemological "Entwurf", design. A design can be to broad or it can be to nar-
row. Samba is flexible to adapt to the complexity/complication of the needed design.

Also the operator samba is the start decision of a specific programming, it can start
everywhere inside of the design and programming. Samba is self-applicable in an in-
tra- and a trans-contextural sense.

Global characteristics:
architectonics: 
complexity and structure of disseminated systems A++.
Architectonics is the process of creating the architecture of a system. Architectonics

applies to the polycontexturality of the disseminated systems. In contrast, tectonics is
applied to the intra-contextural architecture or morphology of the distributed formal sys-
tems. The dissemination of formal systems like A++ can be monomorphic or polymor-
phic. Monomorphic dissemination is distributing and mediating systems with equal
architectonics, polymorphic dissemination is distributing and mediating systems with
different tectonics. Architectonics is considering the distribution of "logical loci".

reflectionality: 
mechanism and degree of modeling outer or inner neighbor systems into local sys-

tems from simple mirroring to complex metamorphosis. To mirror another system or oth-
er processes by the reflection operator is to repeat (replicate, clone) it into an inner
environment of the mirroring system. The inner environment gives the space for co-ex-
istence of the repeated system and its processes without overriding the mirroring sys-
tem. The inner locus for replication of the other system is given, that is produced by the
architecture of the whole system. 

Another kind of reflectionality is enhancing the complexity of the system, say from
S1 and S2 to S3 as a reflecting and mediating system. The possibility of inner environ-
ments is also giving logical loci for meta-reflection and introspection in the sense of
Gunther’s Inro-Semantics.

interactivity: 
Super-operators are managing interactivity between disseminated systems without

metamorphosis. This includes simultaneity, like for transjunctions, and replications.



Local Characteristics:
identify and thematize:
identify the contexture(s) under consideration out of the whole complexity.
Selects a starting point of calculation in a given complexity.
define:
local define in two configurations:
Intra-contextural local define
Trans-contextural local define
lambda:
local lambda in two configurations:
Intra-contextural local lambda
Trans-contextural local lambda
statements:
Statements in SAMBA are contextual and not isolated sentences. SAMBAS is

(con)text based and SAMBAS sentences are inter-textually defined in contrast to
the sentence and name based LAMBDA where sentences or statements are isolated
units constructed by atomic terms and connectors to construct composed state-
ments.   Cf.   http://www.thinkartlab.com/pkl/lola/poly-Lambda_Calculus.pdf

3.1 Comments
Global and local references

The main reference of ConTeXtuers are reflectional and interactional patterns of
the different contextures’ interplay and not the topics (data types) of the systems
involved which are the references of their statements. They may be called global
references in contrast to the local references of the local ARS systems. In general,
references may be isomorphic, supporting the identity of the referred objects, or
metamorphic, transforming their categorial identity. Metamorphic actions are
ruled by the as-category of thematization allowing unrestricted referentiality over
all levels of tectonics of ConTeXtures without confusion and attempts to connect ev-
erything with everything.

Hierarchy and heterarchy

This hierarchical order of brackets or functions shouldn’t mislead to be read as
the genuine structure of the programming texture. A second step of exposing the
computational structure of ConTeXtures is given by the introduction of the heterar-
chy diagram. The head of ConTextures is a heterarchy which is ruling the multitude
of interacting and reflecting hierarchical ARS-systems building the body of a soci-
etal constellation.

Why A++ (ARS)?

We could take any other programming language to involve into contextural dis-
tribution and mediation. It seems that A++ is very basic but nevertheless allows to
develop prototypes of programs in different programming styles. ARS (A++) is not
too radically reduced like the totally minimalist approaches of Iota/Jota and is
equally much more to the point than Scheme. Its clear and honest introduction/
invention by Georg Loczewski played a significant, motivational and inspirational,
part to my own constructions.

http://www.thinkartlab.com/pkl/lola/poly-Lambda_Calculus.pdf
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3.2 General Bracket-Scheme of ConTeXtures

 Diagramm  2 Global general scheme for ConTeXtures
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 Diagramm  3 Local general scheme for A++

3.2.1 Contextural Dynamics in the General Bracket-Scheme of ConTeXtures
The local scheme of A++ has to be interwoven with its neighbor local systems

involving some contextualizations of the basic local definitions which are not made
explicit in the General Bracket Scheme but are a natural consequence of the head
structure of the design. Contextualizations of concepts are realized mainly by the
AS-category. In ConTeXtures, the as-category appears as an abstraction, the as-
abstraction. To thematize is always to thematize something as something. The as-
category is involving the whole conceptuality of ConTeXtures and has to be real-
ized on all levels of its tectonics (design, thematize, identify, define, topics, styles). 

For introductionary reasons I have to restrict my representation of ConTeXtures
and these interesting aspects of the structural dynamics of ConTeXtures, produced
by the as-abstraction based on proemiality, to a stable exposition. Dynamics will
be of some significance, later, for the concept of "metamorphic reflection" and the
process of heterarchization of OOP concepts.

 Diagramm  4 Contextualized "Name of Abstraction"

Reduction of the as-abstraction to the identity abstraction

define namei as namej: for i=j, this construct reduces to the classic: define name.
The as-abstraction: The name X as the name Y is the name Z.
The name-abstraction:  the name X as name X is name X.
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4   General Mapping Strategies
GM: Matrix –> Templates –> Patterns –> Configurations –>Constellations

1.  Matrix
General complexity and complication of the balanced matrix (m=n) with its combi-

natorics of abstract positions as abstract place holders for ARS systems.
2.  Templates

Different reflectional and interactional 
combinations of contexture based ARS systems Si
in a balanced positional matrix.

3.  Patterns
 Mapping the super-operators {id, perm, red, bif, repl} on the templates as horizon.

4.  Configurations
Combinations of the different topics (Numeric, Boolean, Symbolic, etc.) on the pat-

terns. And the combinations of different programming styles.
5.  Constellations

Combinations of the concrete realizations of topics as operators and operands in ho-
mogene or heterogene programming styles.
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4.1 Mapping general templates unto the matrix

This kind of mapping is still, more or less, neutral to the
difference of reflectionality/interactionality and is
marking only the occupancy of the loci by a subsystem
and defining its complexity, m=3, and its type as bal-
anced, in contrast to over- or under balanced matrices.

4.1.1 Positional matrix
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4.1.2 Templates unto the matrix

The positional matrix is interpreted by different templates.

4.1.3 Bracket exposition of constellations of templates

Constellations of templates visualized by brackets. The advantage of the bracket
method to the matrix method is its better operativity and visualization for complex for-
mulas.
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4.1.4 Fractalized constellations

Constellations of templates can naturally be iterated producing some iterative,
recursive and fractal structures of the templates, visualized by the matrix as well
the bracket method. An alternative presentation is to localize contextural modules
at their loci in a diagram.
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4.2 General patterns of templates

Interpretation of the distribution of subsystems, general patterns, in the general ma-
trix of templates by super-operators.
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4.2.1 A realization of a pattern of templates in ConTeXtures: ( repl, id, id )
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5   Thematizing: Abstracting the processuality of abstractions

5.1 Linearity, tabularity and (s)electors
A++ has as its presupposition the linear order of its basic terms. This linearity, based

on the fundamental laws of logos, is behind the introduction of the selector function
"sel". This introduction is conventional, referring to the culture of logocentrism and its
linearity. In contrast, poly-A++ is based on the chiastic structure of its disseminated sys-
tems, therefore the conventional introduction of order, exchange and coincidence re-
lations are behind the definitions of the systems objects, like truth values.

The IF- Abstraction 
One of the most basic operation in any programming language is to make a decision, to
select a block of code depending on the truth value of a certain argument. 
Such an operation people have in mind, when they talk about IF-statements, IF-THEN-ELSE-
constructs, alternative structures and a few more. 
We can very well say that the IF-statement has the function to select code to be evaluated
or executed. The IF-statement therefore is a function taking three arguments: 

1.a condition having a certain truth value (true or false), 
2.the first block of code and 
3.the second block of code. 

Because the selection of the code block to be evaluated or executed depends on the first
argument, we can look at the first argument as a selector. 

Having thus analyzed the essence of an IF-function we may code it as a `lambda abstrac-
tion': 

                  (define if ( lambda ( a  b)
                                    ( sel a b )))

Body of the IF-Abstraction 
The body of this lambda abstraction is just a synthesis of the selector with its two arguments,
the two blocks of code from which to select. 
Because there are only two possibilities to perform a selection we distinguish between two
selectors: 
1.The selector which selects the first argument we assign the name `true' 
2.and the other selector, which selects the second argument, we give the name `false'. 

The lambda-abstractions for true and false are easily written as follows: 

                                  (define true (lambda (a b )
                                                             a))
                                  (define false (lambda (a b )
                                                             b))

http://www.aplusplus.net/bookonl/node74.html

http://www.aplusplus.net/bookonl/node74.html


5.2 Selectors and electors: Intra-, trans- and poly-contextural 
selectors

ConTeXtures as poly-A++ is based not on linearity but on a more complex topol-
ogy, here, on a tabular order to provide the chiastic distribution of different A++-
systems.

As a consequence, the basic abstraction of selection "sel" has to be enhanced
to a tabular selector, selecting at once terms from different neighbor systems. Terms
thus, are not only intra-contextural in a linear order with predecessor/successor but
globally in a tabular order with neighbor terms, too.

Because of the graphematical tabularity
of ConTextures there are not "only two
possibilities to perform a selection". For
each contexture there are intra-contextur-
ally only two possibilities to perform a se-
lection. But between contextures, trans-
contexturally, there are as many new se-
lectors as neighbor contextures. These

new "selectors" should be called electors. Electors are electing the election for se-
lectors to perform mutually each its selection. 

That is, a selection can happen at once at different loci of a disseminated system.
In other words, such a general a selector as any other successive or procedural
action has to be realized in the two dimensions of intra- and trans-contexturality.
Thus, a selector as a single operation can be realized intra-contextural staying in
the same contexture or trans-contextural switching to another neighboring contex-
ture. A selector as a complexion can be realized at once in different contextures.
It could therefore be called a "poly-selector". Such a poly-selector can be defined
as an overlapping of an intra-contextural selector "sel" and a trans-contextural se-
lector, called elector "elect". 

Thus, samba ( elect, 1 ) = ( sel ).
The elector "elect" is (s)electing the con-
texture in which a selector "sel" is select-
ing its linearly ordered atomic terms and
elements.
Selectors are acting in a pre-given order,
they are conventionally introduced, not
produced, but inherited from logocentric

semiotics. Electors are involved in the evocation of new orders, new contextures,
to give space for distributed selectors, positioning them into the graphematic ma-
trix. Distributed selectors are constructed in the graphematic play of (s)electors and
are not inherited from logocentrism.

Electors and abstractions
The process to elect contextures has to be understood as a generalization of the

process of naming. Naming is intra-contextural, and in ARS, it is quite general, al-
lowing to name the process of naming itself, at least in some restricted sense. But
it is not possible within the scope of this generalized concept of abstraction and
naming to identify the frame of naming itself, and to name, call and identify it. This,
in the rationality of strict identity of terms would automatically lead to circularity
and self-destruction.

The process of electing contextures inside a contexture is possible only within the
framework of sameness as contrasted to identity and diversity. Thus, a "self-call" is
possible without paradoxes because it calls itself in the mode of sameness and not
in the mode of identity. Electors are evoquing other contextures as the same con-
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textures marking the other contexture and the othereness of contextures.
Contextural decisions are tabular with one dimension involving selectors the other

dimension electors. Each posittion in ConteXtures is defined simoultaneously by its ele-
cotrs and its selectors. There are no selectors without electors and there are no electors
without selectors; both are designing the field of polycontextural reasoning and com-
puting.

An important circularity, or not? 

As we can see here again, beginnings in logocentric systems are always circular.
The if-function is defined by true/false of the selector and the abstractions true/false
are defined by the two functions or meanings of the selector. That is, the selector is de-
fined by true/false and true/false is defined by the selector. 

5.3 Electors in different topologies
As mentioned before ConTeXtures are designed a long the distinction of interaction-

ality and reflectionality, that is, a kind of a 2-dimensional dissemination of computa-
tional systems. This restriction happens for introductory reasons. There are no reasons
why the abstraction of election has to be restricted to 2-dimensionality. In other words,
the domain of the electors are defined by the type of dissemination. Dissemination can
be realized in different topologies producing complex architectonics of polycontextur-
ality.
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5.4 Closure property of ARS and Closures in ConTeXtures
ARS (ARS) = ARS

To identify is to elect "inside" a thematization. To elect is leaving the contexture
for another contextures of the compound.
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C. Sketch of a General Theory of 
Subjectivity

6   Cognition and Volition

Gunther’s theory of subjectivity is introduced by the proemiality of cognition and vo-
lition distributed over the positions of I-subjectivity and Thou-subjectivity in common co-
created environments.

In this study I interpret the terms cognition and volition by the terms reflectionality and
interactivity.

Following the DiamondStrategies the duality of reflectionality and interactivity has to
by dynamized by a first step to the quadruple:

6.  Reflection as reflection: reflective reflection (short: reflection)
7.  interaction as interaction: interactive interaction (short: interaction)
8.  Interaction as reflection: reflectional interactivity (short: intervention)
9.  Reflection as interaction: interactional reflectionality (short: interlocution)

If we would start the prospect with intervention/anticipation the catalogue would be:
10.  Intervention as intervention
11.  Intervention as anticipation
12.  Anticipation as anticipation
13.  Anticipation as intervention

Because no instance is primordial and rooting the chiasm all combinations of the 4
introduced possibilities have to be involved in the chiastic game of mutual founding.

Reflectionality is connected with the ability of an agent to iterate its inner environment
placed at an architectonic locus into itself. In this sense reflectionality is a self-reflection-
al action not involving the neighbor agent in a behavioral sense. To model reflection-
ality in the context of the founding relation (Gunther) is supporting this self-referential
understanding of reflectionality.

In contrast, interactivity is the ability of an agent to interact with its neighbor agent.
To model interactivity in the context of the proemial relationship (Gunther) is supporting
this approach to interactivity. The proemial relationship is ruling the possible modi of
interaction and transformation (metamorphosis) between actors.

Limits

This paper is restricted to the study of the interplay of reflectionality and interactivity
in computational systems in a very "harmonized" setting.

It is beyond the scope of this study to compare the concept of subjectivity with its
treatment in philosophy of mind, psychology, cognitive sciences and reflectional pro-
gramming, computational reflection, and others. This is left for another study.



7   Reflectionality

7.1 Operational introduction
Reflectionality comes into the
general game if we thematize
the relationality or operativity of
the proemial construction from
the point of view of an internal
description/construction. An in-
ternal description has to consid-
er  a l l  g iven concepts  of  a
construction and to re-construct

the builded construction out from the inside. An external description is realized by
an external observer of the construction knowing the rules of construction. A full
polycontextural description has furthermore to take into account the complementa-
rity of internal and external descriptions of its constructions.

It reads as follows:
the operationality between operator and operand from the view of the operation,
the operationality between operator and operation from the view of the oper-

and,
the operationality between operand and operation from the view of the opera-

tor.
And:
the operationality between operator and operand from the view of the position,
the operationality between operator and operation from the view of the position,
the operationality between operand and operation from the view of the position.
And so on.
The method of internal re-construction of the whole leads, conceived from a for-

mal aspect, to the so called context-valued logics (Gunther 1968, Kaehr 1976) in-
troducing the notion of logical invariance complementary to the notion of logical
equivalency not yet been taken into account by the observer theory of second-or-
der cybernetics. 

Gunther’s "founding relation" seems to be a complementary concept to the pro-
emial relationship as interactivity and reflectionality appears to be complementary
like the difference of internal/external descriptions and constructions.

This investigation intends only to show that the concept of Totality or Ganzheit is closely
linked to the problem of subjectivity and trans-classic logic and that it is based on three
basic structural relations:

          an exchange relation between logical positions
          an ordered relation between logical positions
          a founding relation which holds between the member 
                       of a relation and a relation itself.

Thus we may say: the founding-relation is an exchange-relation based on an ordered-
relation. But since the exchange-relations can establish themselves only between or-
dered relations we might also say: the founding-relation is an ordered relation based
on the succession of exchange-relations.  When we stated that the founding-relation es-
tablishes subjectivity we referred to the fact that a self-reflecting system must always be:
self-reflection of (self-and hetero-reflection).
Gotthard Günther, Formal Logic, Totality and the Super-additive Principle 
in: Beiträge zur Grundlegung einer operationsfähigen Dialektik, Band 1, 
Meiner Verlag, Hamburg, 1976, p.329-351, first publ.: BCL Report, 1966
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7.1.1 Procedural introduction
The conceptual guiding metaphor may be "Reflexion-in-sich", reflection-into-itself of

a the process of thematization. This has to be strictly distinguished from the principle
of iteration and recursion of formulas or of the hierarchy of meta-levels or meta-lan-
guages in reflectional programming.

Also the design of ConTeXtures is in many ways in the tradition of Gunther’s polycon-
textural logic our development feels nevertheless not restricted in any sense by this con-
nection in its further developments.

 Diagramm  5 Reflection onto-itself (Reflexion in sich)

It is of general importance to see that all reflectional but also all interactional proce-
dures are rooted in their local beginning, their start of a deriviation or of a formula
development. This is very obvious for logical proofs based on tableaux methods where
attributes and signatures of trees are considered. 

Iteration of Distinctions

Not everyone is a mathematician
or a programmer, therefore it has
to be assured that there are surely
no limits in iterating introduced
concepts, distinctions and construc-
tions without any limits.
Iterative diagrams are not very
practical, formulas and even matri-
ces are more comprehensible.
Another approach to structural iter-
ation, not studied in this introduc-
tion, would be the iteration of the
inner arena of the scenario, that is,
the iteration of the M-dimension
while keeping the O-dimension
constant, producing therefore over-
balanced systems with m>n.
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8   Interactivity

Interactivity, which is not chang-
ing the structure of architecton-
ics, can be seen as a kind of
reflectionality, reflection-onto-oth-
ers. In other words, with a stable
architectonics which is excluding
metamorphosis and evolution/
emanation, both concepts are
complementary. That is, reflec-

tionality can be seen as an interactivity in the modus of replication into itself. Both
activities are complementary to each other and have to be distinguished properly.
In polycontextural logic interactivity is mainly realized by different kinds of trans-
junctions. But interactivity is a general concept and is not reduced to logical oper-
ations only. In the terminology of super-operators of ConTeXtures interactivity is
represented by the operator "bifurcation".

Interactivity is not based on communication as information processing or mes-
sage passing (Paul Dourish). It can be described as the action of addressing an
addressee which is able to accept the addressing by its own addressable structure.
After having been addressed and the addressing is accepted by the addressed
and the addresser has recognized the acceptance of being addressed and the ad-
dressing is thus established, information can be exchanged between agents in the
sense of processual communication (MAS, MIC).

Interaction is not information or communication

Interaction is action and not information. Informations maybe special actions. In-
teractivity in the sense of PCL is understood as a kind of action. Therefore, to use
semiotic terms, it is a genuine pragmatic function. But pragmatics is still not well
developed and shouldn’t be based on linguistic paradigms. In a more radical ter-
minology interactivity (as well as reflectionality) should be understood as based in
the togetherness (Mitsein, Heidegger) of agents ("embodied interaction", Dourish)
and focussed not on "what" is processed (information) but "how" interaction itself
is realized in societal contexts.

Therefore, the structure of interaction is always complex: at once realizing the
addresser and the inner environment of the addressee. This simultaneity of inner
and outer environments of agents is involving a kind of structural bifurcation and
a mutual actions of acceptance and/or rejection of the involved agents based on
complexity of their architectonics. That is, the addressee has to give space (einräu-
men) to the addresser to be addressed. To address and to accept to be addressed
is a mutual action of at least two agents in a common co-created environment. Self-
addressing would be a case of interactional reflectionality of an agent into itself.

Acceptance and rejection

Interactivity therefore is a mutual action of acceptance and rejection between dif-
ferent agents. Only on the base of this interactional agreement information ex-
change can happen. Information, and information processing is, thus, secondary
to interaction. Information thus belongs to cognition while interaction belongs to
volition as the minimal contextures of subjectivity. This insight may not be new if
we refer to phenomenological analysis of interaction and cognition well document-
ed by Paul Dourish. The strict difference lies in the acceptance of the challenge to
deal with it in formal polycontextural logical/mathematical and programming
terms. An endeavour which is strictly rejected by the phenomenological approach.

operator

operand

operation

1

operator

operation

operand

1
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Reductions of complexity

Also interactivity involves an architectonic representation of the neighbor systems to
happen in a strict structural way it doesn’t exclude the possibility of reduction to a less
complex representation by an interacting agent. This is based on the dynamics be-
tween semantic and pragmatic aspects of interaction. What would enforce a structural
place in a inner environment of an agent can be interpreted as a semantic interaction
being well represented at an existing structural place shared by other interactional rep-
resentations. In other word, a agent with 100 neighbors has not to represent for once
and ever all 100 agents in his inner environment, simply because it is anyway not in-
teracting in a structural way always and at once with his 100 neighbors. But there is
no structural reason which would deny such a complex representation of neighbor sys-
tems if needed.

An example

 Diagramm  6 Reflection onto-other (Reflexion in anderes)

In the example there is an addressing from O2 to O1 and O3 realizing positioning
at once in O1 as O1M2 and in O3 as O3M2 while keeping O2M2 as the addresser
of O1 and O2 persistent. The same simultaneous autonomy of agents holds for O1
and O3. The complexity of the agents O1 and O3 are giving space to the possibility
of acceptance of the interaction.

In the diagram the mutual interaction of acceptance and rejection has to be interpret-
ed, and is not visualized as such. That is, the action of O2M2 to O1M2 means, that
O2 is rejecting the job and addressing it to O1 and O1 mutually accepts the job in
offering computational space to O2 at O1M2.

Co-operation: Interactions as commands

The realization of an interaction, as described,  can be understood as a co-operative
command. An agent or processor O2 is commanding on the base of realized interac-
tivity with agent O1 and O3, that is of realized architectonics, to proceed a task of
O2M2 at O1M2 and the same with O3 to proceed at O3 a task of M2 at O3M2. On
the base of realized interactivity the informational aspects of tasks can be considered.

Cybernetic Ontology

This modelling of the situation is a further concretization of the concept of logical
transjunctions introduced 1962 by Gotthard Gunther. In his paper "Cybernetic ontol-
ogy and transjunctional Operations" the terminology of acceptance and rejection was
central for the definition of the binary logical function transjunction in place-value sys-
tems (poly-contextural logics).
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9   Interplay between Interactionality and Reflectionality

Mixing freely reflectional and interactional pattern are leading local iterations
and recursions of the general scheme producing a fractalization of the general
scheme.

In more systematic words, a full theory of computational subjectivity has to con-
sider not only the aspects of reflectionality and interactivity as interpretations of
cognition and volition in isolation but the full interplay of both together.

Pattern: [G111, G222/003/100, G033]

At the locus O2 we have a full introspection G222 and an interaction from the
locus O3 into the locus O2 producing additionally to G222 (O2/M1M2M3/
G222) the pattern: 

O1: (M1M2M3)/G111
O2: ((M1/G100(M2(M3/G003))/G222)))
O3: (M1M2M3)/G033
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9.1 Proemiality inside interactivity and reflectionality
The exchange between oper-
ator and operand has to be
described simultaneously
from both positions. That is
why we have to realize a
double description, a double
gesture of inscribing the pro-
emiality of the constellation.
To visualize this procedure
we have to realize a double
description of the diagram 
The first diagrams are cor-
rect insofar as they describe

the structure of proemiality. But at the same time they are abbreviations insofar as the
process of reading them, that is to read them at once from both sides, is not inscribed.
This process of reading has to be done by a reader. But we have to make it explicit
and to visualize it. Therefore, even if it seems to be obvious, it has to be realized and
not only be mentioned. The new diagram is focussing more the process of proemiality
than on its general structure.

9.2 Superpositions of patterns
Superpositions are simply iterations of patterns and are additive to the matrices. The

presentations until now are abstracting from the procedural steps. To introduce super-
positions we have to add some organizational numbering to the diagrams represent-
ing the single steps at each locus. Each locus can have its own numbering, representing
its own temporality of the procedural steps. There is no need for an universal clock for
distributed systems. Time too, has to be disseminated and can be unified by negotia-
tions between agents.

[S120, S020, S023] + [S003, S002, S023] = [S123, S022, S023}
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10   Special constellations

10.1 Parallel computations of singular mediated systems

In this case, the agents are not realizing their possibility of interacting and re-
flecting between each others. But nevertheless, they are not separated in abstract
isolation because their distribution is mediated by construction. Which is also set-
ting some limits in the range of their common rationality in restricting abstract com-
binations of operators to concrete realizable possibilities of mediated, but not
interacting, combinations. 

At each place, a full but not interactional/reflectional mediated programming
and computation is happening. All sorts of strict mediated parallelisms can be re-
alized in this setting.

10.2 Reductional interactions

In this case the agents are reducing their polycontextural complexity to a single
contexture but keeping their architectional design as 3-contextural.

The first matrix shows the result
of reduction to the pattern
O1M123, the second keeps the
origins of reduction. The reduc-
tions starts somewhere, there-
fore the pattern [S123, S020,
S003] is not eliminating the

sources of the reduction to the form [S123, S000, S000]. But this eliminative re-
duction pattern is correct for the result of the reduction as such. Both matrices make
clear the difference to introspection produced by replication which is simply pro-
ducing to the iteration of the single computational system (O1M1) to [S111, S000,
S000].
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10.3 An agents full reflection into-itself 

At the place O1, the agent is reflecting into-itself the (active or) non-active but existing
neighbor systems O2 and O3. This can be seen as a kind of reflectional introspection
produced by the super-operator replication at 3 intra-contextural places. This structural
limitation to 3 places [S111, S000, S000] is not excluding the endless iteration of re-
flection into-itself at the same place of reflection O1 in the stable constellation. That is,
the pattern is fractal, the procedure iterative and bottom-less (co-algebraic).

10.4 Permutative Patterns
Permutations, pro-
duced by the su-
pe r -opera to r
perm, are behind
theses "visits"to
o the r  sys tem,
mostly appearing
in De Morgan like
formulas of Bool-
ean topics.

 

10.5 Stability of complexity and complication

interact (reflect(O1O2O3(M1M2M3))) = (O1O2O3(M1M2M3))

Stability: The constellation is closed under reflection and interaction.
This explains why the reflectional domain of an agent is restricted to the

number of its neighbor systems. If the scope of M would be enlarged with-
out a general enlargement of the constellation it would have the function of
introducing fictional and virtual neighbors. To enlarge the domains new
functions of extensions would be needed. In all considered cases in this
study, complexity as well as complication of the constellation is stable. The very inter-
esting cases that interaction is augmenting complexity and reflectional complication of
the constellation has to been studied later.
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11   Intervention

Interaction as reflection: reflectional interactivity (intervention)
Reflectional interactivity can be understood as an interaction unto the reflectional

patterns of a neighbor agent or into the acting agent itself, therefore it can be
called intervention and self-intervention.

Interventions are anticipating the behavior of an agent and try to influence it and
to change its plans and motivations maybe to avoid conflicting situations.

Intervention is re-programming
the reflectional system of the
neighbor system and not the sys-
tem itself. The self-image of the
neighbor sys tem is  re -pro -
grammed and not the system it-
se l f  as  i t  appears  in  an
interactional context to the inter-
acting agent and also not as the

reflectional image of the neighbor in the internal environment of the agent. This is
a further specification of subjectivity in the I/Thou-relation of togetherness or the
proemiality of (cognition, volition, I, Thou) in the sense of Gunther.

Interventions may be realized
in two directions of reflection
and interaction, reflectional in-
teractions.

11.1 Intervention between reflectional systems
From; "A Formal Method of Investigating Reflective Processes", V.A. Lefebvre, General
Systems, Vol. XVII, 1972, pp.181-198

"We denote the conflicting parties (individuals) by X, Y, and Z. To make a decision, X
must construct a model of the situation (for instance, to represent in a particular way
the arena of interaction, together with the forces at hand). Y also constructs a model
that his opponent X also has some model of the situation. Z, in turn, may be aware that
the inner worlds of X and Y are constructed in just this manner.
Succes in conflict is largely determined by how adeaquately the opponents simulate
each other’s inner worlds."
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12   Interlocution (Anticipation)

Reflection as interaction: interactional reflectionality (interlocution, anticipation)
Interactional reflectional can been
seen as a one directional or a mutual
interaction between two reflectional
activities. Plans, motivations and
strategies are directly involved with
the aim to interact or change each
others intentions and self-interpreta-
tions.

Inner and outer describtion of the arena of reflections and interactions.
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D. Mapping  ARS onto the PCL-Matrix

13   Abstract of ARS

13.1  ARS (by Georg Loczewski)
•  Abstraction::  to give something a name,
•  + Reference:: to reference an abstraction by name,
•  + Synthesis:: to combine one abstraction with other abstractions to create something
new.
 The constitutive principles of A++ are those, that make A++ to what it is. These princi-
ples are essentially the nucleus of the language, everything else can be derived from
them. ARS, as introduced above in ars provides three of these principles and `lexical
scope' is the fourth.
In A++ ARS is universal, the principles can be applied anywhere at any time because
they make up the language. 

 Commenting the definition
•  Like the introduction to the Lambda Calculus the definition of A++ deals with ̀ lambda
expressions' and defines three different types: `abstractions', `references' and `synthe-
ses'. This corresponds to the `lambda abstractions', the `variables' and the `applica-
tions' in the Lambda Calculus. The few differences in the A++ - approach are the
following: 
•  The syntax of A++ is different. It is borrowed from Scheme and so simple that it can
be described in a few words:
A lambda expression may either be a symbol or a construct with parenthesis. A con-
struct with parenthesis represents a lambda abstraction if the first thing following the
opening parenthesis is a symbol ’lambda’ or ’define’, otherwise it must be an applica-
tion.
This is all there is to the syntax! It can't be simpler. 
•  Abstractions may be given a name explicitely, matching the general human under-
standing of `abstraction' as `to give something a name'.
•  Abstractions may contain more than one lambda expression in the body to be eval-
uated.
•  Applications may contain more than two lambda abstractions including several ar-
guments passed to the operator.
•  The rules for the conversion of lambda expressions defined in the Lambda Calculus
are valid in A++ as well. Due to `lazy evaluation' in A++ lambda expressions can be
treated the same way as in the Lambda Calculus. 

 Lexical Scope
 `Lexical Scope' defines the access to variables within functions. Variables within func-
tions are either  `lambda-bound' or `free'. The `lambda-bound' variables refer to argu-
ments passed to the function. The so-called `free' variables must have been defined in
the inherited environment of the function. In a language with `Lexical Scope' a lambda
abstraction inherits all variables from those abstractions in which it is defined. 
    `Lexical Scope' in A++ is coupled with indefinite extent in contrast to Pascal where
'Lexical Scope' is coupled with `limited extent'. 

ConTeXtures = DISS ( ARS )
            DISS = Distribution + Mediation

ConTeXtures = 
 Computation + 
 Reflection + 
 Interaction + 
 Intervention + 
 Anticipation
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Definition of A++ in EBNF-Notation
  <expression>  ::= <abstraction>  |
                            <reference>    |
                            <synthesis>
  <abstraction>  ::= ’(’ define <variable> <expression> ’)’ |
                                          ’( lambda (’ {<variable>}’)’  |
                                         <expression> { <expressions> }’)’
  <reference>   ::= <variable>
  <synthesis>    :: = ’(’ <expression>  { <expression> }’)’
  <variable>    ::= <symbol>

•  |      vertical bar stands for 'or' 
•  [ ... ] brackets mark optional expressions 
•  { ... } curly braces mark repeated expressions: 0 or  n-times 
•  ' ... ' single quotes mark literal text 
•  ( ... ) braces are used for grouping 

•  < ... > angle brackets mark terms 
 The generalizations of the Lambda Calculus are threefold:

•  An abstraction can be assigned a name, and such an abstraction with its name definition
may appear anywhere in a program.
•  The body of a lambda abstraction may consist of more than one lambda expression.
•  A synthesis may combine more than one lambda expression.
http://www.lambda-bound.com/
http://www.aplusplus.net/bookonl/node28.html  to /node36.html

13.2 Syntax of the Lambda Calculus 
Because of my extensive use of the operator/operand terminology for the distribution

and mediation of ARS, a citation of Burge may be helpful:

"An expression may occur in three positions as a component of a larger expression:
1. in the operator position,
2. in the operand position,
3. as the body of another lambda expression.

The lambda expression is the second basic method of assembling a new expression. In their
most austere form the expression under consideration may be characterized as follows.

An expression is
           either simple and is an identifier
           or a lambda expression
               and has a bound variable which is an identifier
               and a body which is an expression,
           or it is composite
               and has an operator and an operand, both of which are expressions.

A rule is needed for recognizing when the body of a lambda expression ends. The rule is
that the body extends as far as it can until it is terminated by a closing bracket, comma, or
the end of the whole expression. It follows that parenthesis are only needed to enclose the
body if it is a list although they may be used if this improves readability."

W.H. Burge, Recursive Programming Techniques, 1975, p.9

http://www.lambda-bound.com/
http://www.aplusplus.net/bookonl/node28.html


13.3 Operational interpretation of ARS

ARS-syntax                                                Operator-terminology
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
<expression>  ::=                               linguistic ARS-contexture ::=
<abstraction> |<reference> | <synthesis>     <operator> | <operand> | <operation>           
                           
<abstraction>  ::=                                  <operator> ::=
’(’ define <variable> <expression> ’)’ |        operator of operator (operator as operator)
 ’( lambda (’ {<variable>}’)’  |                     operator of operand (operator as operand)
 <expression> { <expressions> }’)’                   operator of operation (operator as
operation)

 <reference>  ::= <variable>                    <operand> ::= programming operand
 <variable>       ::= <symbol>                      <operand> ::= lingustic operand

 <synthesis>    :: =                                 <operation> ::=
’(’ <expression>  { <expression> }’)’             operator ( operation )

Comments and contrasts

It is more than obvious that the basic structure of ARS is in all senses of its intro-
duction hierarchic, and there is no justification and formalization of its hierarchy
by the calculus itself. Also the conceptuality of ARS is deliberating the classical use
of the lambda abstraction internally to a profound self-referentiality of the naming
process it is stacked strictly in its logocentric closure. In contrast to this hierarchic
structure, ConTeXtures are based on the intuition of proemiality which allows a het-
erarchic distribution and mediation of different ARS systems as wholes.This is real-
ized by the acceptance of the full interplay of its terms, operator, operand,
operation and position. 

The strict linearity and hierarchy of the operationality of the Lambda Calculus is
thus replaced by the heterarchy and tabularity of ConTeXtures structured by the in-
terplay of the proemial relationship between operator, operand, operation and po-
sitions. 

The diagram gives only the mini-
mal structure of this interplay. Poly-
contexturality is not starting with
one, also not with 2 distributed
systems, but with 3. The third sys-
tem is mediating the 2 mediated
systems. Its balanced structure is
introduced with 4 basic systems
involving 6 contextures.

It should be emphasized that the two representations, the ARS and the ConTeX-
tures, allows to make the difference between "ontological" entities and reflectional
relations. That is, in ARS: abstraction = abstraction. ConTeXtures are guided by the
reflectional as-abstraction: X as Y is Z.
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reference
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1
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operation

1

expression contexture
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operation

1

operator
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13.4 Mapping the principles of ARS onto polycontextural architectonics
To implement ConTeXtures (SAMBA’S) the programming concept A++ (ARS) has to

be mapped onto the general pattern of polycontexturality.
The operator "*" stand for the mediator of sambas, the number "3" tells the degree

of the distribution by the distributor of samba.
The mediator is defined by the proemial relationship of (coinc, exch, ord).
The operator "coinc" is representing the binary relation of coincidence, in the sense

of the sameness of two operands or operators.
The operator "ord" is representing the binary relation of order, in the sense of the

asymmetry of an ordered pair of operator and operand.
The operator "exch" is representing the binary relation of symmetrical exchange, in

the sense of a symmetric difference between operator and operand.
13.4.1 Architectonic proemiality of SAMBA’S

14.  Proemiality of (ARS, 2) = samba ( Abstraction, Reference, Synthesis, 2) with:
 
abstr1 conc abstr2
refer1 coinc refer2
synth1coinc synth2
abstr1 exch refer2
abstr1 exch synth2
refer1 exch abstr2
refer1 exch synth2
synth1 exch abstr1
synth1 exch refer2

A systemic distribution of ARS is considering the difference of system and its environ-
ment involved in the definiton of ARS (cf. SUSHI’S LOGICS).

15.  Proemiality of ARS and its Environment: samba (ARS, ENV, 2):

ARSi ord ENVi, 
ARS1 coinc ARS2
ARS1 exch ENV2
ENV1 coinc ENV2
ARS2 exch ENV1.

"The formation of an abstraction in A++ is not an absolute event, detached of all.  An ab-
straction always takes place in a certain context, which belongs thus substantially to the
formed abstraction. Lambda abstraction is connected at the time of its production with their
context or their environment. The result of this encapsulation is called 'Closure’. " Loczewski
(translation, r.k.)

Abstraction 

Reference 

Synthesis

1

Abstraction 

Reference 

Synthesis

1

coinc

exch
ord

order relation

order relation

exchange relation
coincidence

     relation

ARS1

ARS2

ENV1
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The new formal system is not dealing with the excluded nonsensical syntactical
combinations of the former system (env), but with the otherness of this system which
has two meanings: metaphorically, the shadow of one system and the simulta-
neous brightness of the other.

This diagram
gives an over-
v iew o f  t he
main ways of
themat iz ing
the archi tec-
tonics of dis-
seminated ARS
systems. From
proemial dis-
semination as
interaction to
reflectionality
inside a sys-
tem, to inter-
ventions and

anticipations of relations between ARS systems.

13.5 poly-ARS: Mapping ARS into the polycontextural Matrix
The proposed matrix has two dimensions interpreted as interactional and reflec-

tional dimensions. ARS is distributed over these two dimensions. All laws of and
features of ARS is repeated and conserved by the distributed ARSs. Mediation of
distributed ARS systems is not conflicting the internal laws and features of the dis-
tributed systems because these distributions, reflectional or interactional, are dis-
junctive separated from each other. Therefore, meta-logical topics for each ARS,
like consistency, computability, correctness, completeness, efficiency, etc. are in-
herited. The distribution is not destructive to the internal structure of ARS systems.

Also reflec-
tional and
interaction-
al systems
are gener-
ally gener-
ated from
the point of

view of basic ARS systems, ARSi,j, i=j, diagonal systems, by means of the super-
operator, from an architectonic viewpoint, each position OiMj is containing, is giv-
ing space principally to a full ARS system. What will be restricted only are the pos-
sible combinations of mediations of different ARS systems violating conditions of
mediation.

Each system can interact with its neighbor systems and can reflect/mirror in itself
these neighbor systems. Thus, to the 3 diagonal systems, 6 further reflectional and
interactional systems are involved. That is, each system can interact with the neigh-
bor systems of its outer environment and can have a reflectional representation of
them in itself, in its inner environment.
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14   Mapping Interactivity

14.1 Interactive complexity of poly-ARS
Because of the genuine interactive structure of distributed formal systems, ARS in a

complexion is not fully defined by its isolated structure. ARS-systems in poly-A++ don’t
come in isolation, they are mediated. To focus on a single or a group of ARS-systems
has to take in consideration their interactive structure.

Mediation
samba (ARS, 3) = ARS1 * ARS2 * ARS3

ARS(m) : ARS(m) –––> ARS(m)

locus 1 : ARS1.1, ARS1.2, ARS1.3       for m=3
locus 2 : ARS2.1, ARS2.2, ARS2.3
locus 3 : ARS3.1, ARS3.2, ARS3.3

Acceptance and rejection are interactive topics, procedures, operators which are
mirrored in the neighbor systems on their internal environments. This has to be reflected
in the architectonics of the complex system.

Interactivity is transforming or keeping the structure of the complexion (group of
agents) as whole and is not (yet) considering the actions of single agents in a group.

Also we are using often a linear notation for poly-ARS it is obvious that this can be
only a technical abbreviation of the genuinely tabular structure of poly-contextural sys-
tems.
14.1.1 Superoperators of SAMBA’S

samba (sub-op, ARS, n)
Super-operators sup-op :={id, perm, red, bif, trans, repl}

samba [(id, perm, red, bif, transition, replication), ARS, n]

16.  Identity
samba (id, ARSi) = ARSi 

17.  Transition
samba (trans, ARSi) = ARSi+1

18.  Permutation
samba (perm, ARSi, ARSj) = (ARSj, ARSi)

perm1 : ARS123 –––> ARS132
perm2 : ARS123 –––> ARS321

19.  Reduction
samba (red, ARSi, ARSj) = (ARSi, ARSi)

red1 : ARS123 –––> ARS133
red2 : ARS123 –––> ARS112



20.  Bifurcation
samba (bif, ARS, ...ARSi, ...ARS) = 
            ( ARS, ...(ARSi1...ARSin), ...ARS))

bif1 : ARS123 –––> ARS1, ARS2.1.3, ARS3
bif2 : ARS123 –––> ARS1.2.3, ARS2, ARS3          
bif3 : ARS123 –––> ARS1, ARS2, ARS3.1.2          

21.  Replication
samba (repl, ARS, ...ARSi, ...ARS) = 
              ( ARS, ...(ARSi1...ARSin), ...ARS))

repl1.2 : ARS123 –––> ARS1, ARS2.1, ARS3
repl1.3 : ARS123 –––> ARS1, ARS2, ARS3.1

repl2.1 : ARS123 –––> ARS1.2, ARS2, ARS3   
repl2.3 : ARS123 –––> ARS1, ARS2, ARS3.2   

repl3.1 : ARS123 –––> ARS1.3, ARS2, ARS3   
repl3.2 : ARS123 –––> ARS1, ARS2.3, ARS3   

22.  Reflection
samba (refl, ARS, ...ARSi, ...ARS) =
              ( ARS, ...(ARSi1...ARSin), ...ARS))

All realizable combinations of the super-operators have to be introduced.

Super-operator of interactivity and reflectionality:
sup-op = {id, perm, red, bif, repl}

{id, id,}
{id, perm}
{id, red}
{id, bif}
{id, repl}
{id, repl, perm}
{id, repl, bif}
{id, repl, perm, bif},   etc.

Scheme for patterns: [( x, y, z)]
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14.1.2 General pattern for the (id, id, id )-modus of interactivity

Template: [S100, S020, S003], 
Pattern: [ id, id, id ]

samba id id id horizon
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14.2 Tectonics of Interaction
Different modi of reflection produced by the operator of replication can be de-

fined with the help of the distinction contextures/heads and body. Thus, tectonic
patterns of interactivity are defined by the combination of the contexture/head/
body distributions. This is continued by the reflectional patterns concerning tecton-
ics.

23.  Metamorphic interaction: Replication of contextures at a single locus including  different 
head/body/statements.
24.  Alterational interaction: Replication of heads into itself including bodies under single 

      contextures.
25.  Replicational interaction: Replication of bodies into itself including statements 

      under single heads.

26.  Iterations of bodies in interactional situations which are ruled by a head under a single 
        contexture are not interactions but superpositions. It is only a question of

notation            to write them in a horizontal or in a vertical way.
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15   Mapping Reflectionality

15.1 Tectonics of Reflection
Differend modi of reflection produced by the operator of replication can be defined

with the help of the distinction contextures/heads and body.
27.  Metamorphic reflection: Replication of contextures at a single locus including  different

      head/body/statements.
28.  Alterational reflection: Replication of heads into itself including bodies under single 

      contextures.
29.  Replicational reflection: Replication of bodies into itself including statements 

      under single heads.

30.  Iterations of bodies in reflectional situations which are ruled by a head under a single con-
texture are not reflections but superpositions. It is only a question of notation to write them in a 
horizontal or in a vertical way.
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15.2 Reflectional super-operators/super-operator in reflectional 
contexts

Traditional terms: refection, introspection, meditation, self-reflection, self-modifi-
cation.

Reflection and interaction are complementary features of ConTeXtures, this is mir-
rored in the applications of the super-operators.

Also reflection is ruled and build up by the architectonic operator repl different
super-operators, manipulating the reflectional order, can be introduced. The order
of reflection can be permuted by perm, reduced by red and split by bif. The same
operators as in the case of interactivity can be applied. That is, these operators
have to be differently implemented according to their domain of reflectionality in
contrast to interactivity. Super-operators are changing the indices of their objects
and are more or less neutral to the distinction of head/body as for the classification
of specific reflectional patterns.

Simple reflection into-itself of a contexture by replicating the body of a definition.

Pattern: [S110, S000, S003], 
Template: [(repl, repl, empt), (empt, empt, empt), (empt, empt, id)]

Without metamorphosis, reflection is stable in respect to its topics. Its topics don’t
change under reflection. But there are also good reasons to study metamorphic re-
flections which are changing the definition of the topic of the reflected object. This
happens in creative reflections when an object turns out to be of another topic then
believed at first. In this case the general pattern has to be transformed.

Reflectionality is connected with the ability of the operators samba and contex-
ture to call a contexture. It seems that this is realized by building and calling the
full closure of a contexture.
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15.2.1 Replicational and metamorphotic reflection.
A pattern for metamorphic reflexion

Pattern: [S111, S000, S000]
The succession of reflexion and the successive transformation of the topic of the ob-

ject seems to be not restricted by reflectional mediation rules.
In contrast to this, it has to be analyzed which combinations of topics can be medi-

ated under poly-topic distribution over different non-reflectional contextures.
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15.3 Combinations of interactivity and reflectionality

Pattern: [S111, S222, S003]

[((contextures1, contexture2), 
(head1, (body1.1, body1.2, body1.3)), 
(head2, (body21, body2.2, body2.3))), 
(contexture3, head3, body3)] 
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E. Mapping General Topics
Topics are specifications of the general objects (elements, terms) of ConTeXtures.

General polycontextural objects are called complex objects, c-obs. Intra-contextural
objects are the well known obs of Curry. Topics are specified into the data types or
sorts of Boolean, Numeric, List, Relational, Class, etc. and reflectional/interactional re-
alizations.

31.  Boolean
32.  numerical
33.  list
34.  class
35.  interactional
36.  reflectional (paradoxial, ambiguous)

16   Objectional proemiality of SAMBA’S: From obs to c-obs

The general scheme is: samba ((ARS), n)

samba (ARS), 1 ) = (ARS)

samba ((ARS), 3 ) = (ARS* ARS* ARS)

samba((lambda x y), 3)
         (lambda x y)
               (lambda x y)
                      (lambda x y)  

samba ( samba, 3,  (ord, coinc, exch), x, y )
                              
coinc ( x y )                   ord (x, y)
x1 coinc x2                      xi ord yi, i=1,2,3
x1 coinc x3
x2 coinc x3
y1 coinc y2
y1 coinc y3
y2 coinc y3
              
 exch (x y )
x1 exch y2                                                  x(3) == ( x1 coinc x2 coinc x3 ) 
x1 exch y3             
y1 exch x2                                                  y(3) == ( y1 coinc y2 coinc y3 )
y1 exch x3
x2 exch y3                                                  x(3) exch y(3) $ x(3) ord y(3)

x3 exch y2

x1 y1

x2                   y2

                y3            x3



ARS as a special case of ConTeXtures 

ARS = samba (( ord ) x y, 1)
samba ( (ord, coinc, exch), x,y,1) = samba ( ord, x,y, 1) = 
samba ((ARS), 1) = ARS   
The basic function or structure "ord" is behind the basic ARS function "sel".

But, there are other possibilities usually not recognized by formal approaches:
analogism = samba (ord, coinc, exch), 1) ==> samba ( coinc, 1)
polarism = samba (ord, coinc, exch), 1) ==> samba ( exch, 1)

And all combinations of incomplete chiasms. (cf. Table)
As in Lambda Calculus and Combinatory Logic the variables x and y stand for

highly abstract objects, their reference is called "obs" by Curry. These obs are neu-
tral to characterization as Booleans, Numbers, Elements, etc. Obs as objects of a
contexture are strictly identical with themselves, but in a polycontextural environ-
ment they are involved in an interplay of sameness with their neighbor objects, too.
In this interplay they are highly ambigue objects, called complex objects, c-obs. At
this point, I have to refer to the introductory chapters to Polycontextural Combina-
tory Logics.

Abstraction as "giving something a name" is neutral to all kinds of identive ob-
jects. Thematization as "identifying something as a (con)texture among other con-
textures" is neutral to all kind of complex objects, c-ob, "refered" or "evoked" by
the operation thematize. Linguistically, thematizing is not referring but evoking. If
the evocation (lit. Webster, ’imaginative recreation’) is stable it can turn to the
mode of reference. Evocation is a hermeneuticat process, it is not identifying but
interpreting textures.

A programming (con)texture is not a single programming language, or a proto-
type of a language, but a complex cluster of mediated different programming lan-
guages involved in mutual interactivity.

Identity versus sameness

"If y is an ob, then y = y." (Curry, 1968)

If y(m) is an c-ob(m), with (for m=3)
Locus1: If y is an ob, then y = y
Locus2: If y is an ob, then y = y
Locus3: If y is an ob, then y = y
                              then y(m) same y(m)

and identity for yi, yj, i=j: yi = yi, but not-identity for i/=j: non(yi = yj).
 
 yi same as yj , but not identical.
samba(m) ( ... (samba(n) ... )) ––> samba(m+n) ( ... )
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17   Mapping the Closure Pattern 

17.1 Closure pattern in A++
 
The most fundamental of the general programming patterns derived from ARS is the closure
pattern. A closure is an encapsulation of a lambda abstraction with its total environment.
This environment consists of all the names that this lambda abstraction has access to. Access
to names in a lambda abstraction is controlled by the so called `lexical scope'.
Lexical scope can also be described as the context of a lambda abstraction in the program
text.

 A closure is a first class object, which means that it can be treated like any data item:

    * it can be stored in memory,
    * it can be passed as an argument to a function and
    * it may be returned as a value from a function.

The slight difference between a closure and an object in OOP is the following:
    * A closure is essentially a function that can be called, but may have all kinds of data
and procedures encapsulated in it.
    * An object is essentially a data item with all kinds of data and procedures encapsulated
in it. One of its procedures (normally called methods) may be ̀ apply', allowing to apply the
object to a set of arguments, which essentially is the same as calling a function.

http://www.aplusplus.net/bookonl/node50.html

http://www.aplusplus.net/bookonl/node50.html


17.2 Distributed and generalized Closure patterns in poly-A++
Because of the introduction of the operator of thematization as a generalization

of the mono-contextural operator of abstraction in ARS, thematization is demand-
ing in the same way for a generalization of the concepts of closure and lexical
scope. Additionally to this generalization, aspects of interactivity and reflexionality
between different closures have to be studied.

 Intra-contextural closures are defined as closures in A++. The difference lies in
there multitude in contrast to the singularity of the closure definition introduced by
Loczewski.

Multi-closures are introduced by the new concept of (poly-contextural) thematiza-
tion in generalizing the concept of (intra-contextural) abstraction.

Thematizations are producing complexions of closures.
The metaphor is therefore not a clam (c-lam) but a rhizomatic population of same

and different clams. 

Contextures as closures/ Closures as contextures

Contextural Heads 

Additional to the distribution of closures to a complexions of closures a new gen-
eralization of the closure and lexical scope has to be established.

The new environment is now not data- or object-based but operator- and super-
operator based. That is, the new environment is build by the operators of the struc-
tural heads and their interactivity/reflectionality.

Polycontextural closures are organizing their contextural closures heterarchical-
ly.

samba ( thematize ...) is defining the structural head of a complexion.

...( define ( lambda ...) ) is defining the intra-contextural body of a singular con-
texture.

The generalized concept of closure can be understood as a step to a structural
definition of the autonomy of interacting complex systems.
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18   Basic patterns and topics in ConTeXtures 

What has to be introduced, first in imitating A++, are basic intra-contextural topics
like numbers, Booleans, Lists, Objects, etc. and new trans-contextural patterns of inter-
activity and reflectionality like patterns of introspectional deepness.

Patterns are the structures of interactivity and reflectionality.
Topics are specifications of the general objects (elements, terms) of ConTeXtures.

General polycontextural objects are called c-objects. Intra-contextural objects are the
well known obs of Curry. Topics are specified into the branches of Boolean, Numeric,
List, Relational, Class, etc. and reflectional realizations. Complex topics can be mono-
form (mono-topics), consisting of a homogeneous distribution of one topic, or they can
be poly-form, realizing a mixture of different topics. We will introduce first only mono-
form topics, that is, distributions with only Booleans, or only Numerals, or only Lists,
etc. Later poly-form topics (poly-topics) will be introduced which are showing interest-
ing properties and relations between different topics. That is, in one complexion of
ConTeXtures we will have Boolean, Numeric, List, etc. topics all being realized at once
and interacting simultaneously. Therefore, a complex object c-ob(m), can be thematized
at once as a Boolean and as a Numeric, etc. object.

Because architectonics, interactivity and reflectionality are prior to topics (data
types, sorts, domains), topics are not on the top of the hierarchy of classification and
presentation of ConTeXtures. On top are the design of architectonics, which here is
constant and stable, considered as a linear mediation of systems, and then interactivity,
which is studied in detail for some interactional modi. Next is reflectionality, which
seems to be a new feature of polycontexturality, not yet well introduced before. The
combination of both, interactivity and reflectionality as complementary features is also
introduced. Locally, at each system, intra-contexturally, the well known feature of com-
putation (Zuse, Turing, Church) and its iterative successivity is placed.



18.1 General pattern for ( id, id, id )-modus of interaction

18.1.1 Proemiality of (mono-form) Boolean objects 
samba((true, false), 3 ) =
define truei ord falsei,   i=1,2,3
define true1 coinc true3,   
define true3 coinc true1
define false1 exch true2,   
define true2 exch false1
define false2 coinc false3, 

                                               define false3 coinc false2
More explicit:
samba ( proem (true, false), 3))
sambai ( definei truei lambdai (a b)
                                          a)))
sambai (definei falsei lambdai (a b)
                                          b)))

samba (ARS, 3, true1true2true3)
              ( define1 true1 (lambda (a b)
                                                  a)
              ( define1 false1 (lambda (a b)
                                                  b)
              ( define2 true2 (lambda (a b)
                                                  a)
              ( define3 true3 (lambda (a b)
                                                  a)

samba (ARS, 3, false1false2 false3)
              ( define1 false1 (lambda (a b)
                                                   b)
              ( define1 true2 (lambda (a b)
                                                  a)
              ( define2 false2 (lambda (a b)
                                                  b)
              ( define3 false3 (lambda (a b)
                                                  b)

T1 F1

T2                   F2

                F3            T3
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18.1.2 Proemiality of Booleans in abstract objects

bool0=
      sorts
            bool
      opns
            T, F : ––> bool

sorts

bool0

1

opns

 sorts

 bool0

1

complexion(3)
bool0:

opns

   F

bool

1

  T

    F

 bool

1

complexion(3)
sort:

T



18.1.3 Samba of Boolean topics
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18.2 Poly-selectors in SAMBA’S

sel ( a b ) has to be replaced by ( sel a b ) !!
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local conditional:
samba (ARS, 3; (if, if, ifi ) :

( id1 (define if (lambda (sel a b)
                (sel a b))))

( id2 (define if (lambda (sel a b)
                (sel a b))))

( id3 (define if (lambda (sel a b)
                (sel a b))))
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18.3 Some application of basic Boolean abstractions
local:
(bdisp! truei)                            ––> truei
(bdisp! flasei)
                         ––> falsei
bdispl! = boolean display, takes the index of its arguments.

global:
(bdisp! true(3))
                         ––> true1 coinc true3
                         ––> true2 coinc false1
(bdisp! false(3))
                         ––> false1 coinc true2
                         ––> false2 coinc false3

isolated contitionals (yes/no, not logical conditionals)
( ifi truei
              (bdisp! truei)
              (bdisp! falsei)
                                       ––> truei
( ifi falsei
              (bdisp! truei)
              (bdisp! falsei)
                                       ––> falsei,     for all i=1,2,3

mediated conditionals of different strength:
( if111 true(3)
              (bdisp! true(3))
              (bdisp! false(3))
                                       ––> true111
( if111 false(3)
              (bdisp! true(3))
              (bdisp! false(3))
                                       ––> false111

( if113 true(3)
              (bdisp! true(3))
              (bdisp! false(3))
                                       ––> true113
( if113 false(3)
              (bdisp! true(3))
              (bdisp! false(3))
                                       ––> false113

( if133 true(3)
              (bdisp! true(3))
              (bdisp! false(3))
                                       ––> true133
( if133 false(3)
              (bdisp! true(3))
              (bdisp! false(3))
                                       ––> false133
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Formula for disjunction

samba ( id, ARS, 3, (or, or, or) )

Explicte introduction

samba ( thematize ( or, or, or ) lambda(3) (a(3) b(3))
         identify (define or1 ( lambda ( a b )
                   ( if  a a b ))))
         identify (define or2 ( lambda ( a b )
                   ( if  a a b )))
         identify (define or3 ( lambda ( a b )
                   ( if  a a b )))               

Short notation

samba ( thematize (or, or, or)  ( lambda(3) (a(3) b(3))

                                                                  ( define(3) or or or (lambda(3) (a(3) b(3) )
                                                            
                                                                 (  if(3)  a(3 a(3) b(3) )))))

samba ( id, ARS, 2, (or, and, or) )
          (  (define or1 ( lambda ( a b )
                            ( if  a a b ))))
          (  (define or2 ( lambda ( a b )
                            ( if  a b a ))))
          (  (define or3 ( lambda ( a b )
                            ( if  a a b ))))                          
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18.3.1 General pattern for (id, id, id )-modus of binary junctional interaction

Sup-operators: (id, id, id)
Set of junctions: { and, or }

Condition for conjunction and disjunction, cond-( a b )

condition for conjunction: ( if a b a )
condition for disjunction:  ( if a a b )

Combinations of junctions

 {(or, or, or)
  (or, or, and)
  (or, and, or)
  (or, and, and)
  (and, or, or)
  (and, or, and)
  (and, and, or)
  (and, and, and)}
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18.3.1.1 Non-realizable combinations

Why is the combination ( or1, if2, or3 ) not realizable in the chosen setting?

The question of realizability/non-realizabiltty of function, shows that on a meta-lan-
guage level we have not only to distinguish the different logical values and their loci
of distribution but also the difference compatibility/non-compatibility defined by the
rules of mediation.
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18.4 Violating the mediation rules
The easiest way to demonstrate the incompatibility of the combination we can

ask for its Boolean representation. This approach can be generalized and applied
to c-obs in general delivering a method to check compatibility and realizability of
mediations, esp. of poly-topic mediations.

( id, id, id )
( bdisp! ( or1, if2, or3 )
( bdisp! or )
( bdisp! if )
( bdisp! or )

( bdisp! or)
( bdsp! or true1 true1)  ––> true1
( bdsp! or true1 false1)  ––> true1
( bdsp! or false1 true1)  ––> true1
( bdsp! or false1 false1)  ––> false1

( bdisp! if )
( bdsp! if true2 true2)  ––> true2
( bdsp! if true2 false2)  ––> false2
( bdsp! if false2 true2)  ––> true2
( bdsp! if false2 false2)  ––> true2

( bdisp! or)
( bdsp! or true3 true3)  ––> true3
( bdsp! or true3 false3)  ––> true3
( bdsp! or false3 true3)  ––> true3
( bdsp! or false3 false3)  ––> false3

If we confront this result with the proemial conditions of our truth values, esp.
false2 coinc false3, we observe a collision between the two results:
( bdsp! if false2 false2)  ––> true2 
( bdsp! or false3 false3)  ––> false3

The values true2/false3 are neither equal nor analog, they are different and be-
long to the exchange relation and not the coincidence relation, like, say true1/
true3 or false1/true2. Therefore, the mediation of the combination ( or1, if2, or3
) is not realized.

   samba((true, false), 3 ) =
   define truei ord falsei,   i=1,2,3
   define true1 coinc true3
   define false1 exch true2
   define false2 coinc false3

This type of consideration has to be applied also to all other topics and their con-
ditions of mediation outside the range of Boolean values. 

T1 F1

T2                   F2

                F3            T3



p p

 Rudolf Kaehr November 24, 2005 11/24/05 DRAFT  DERRIDA‘S MACHINES 73

Another mediation

The combination ( or, if, or ) can be realized under the pattern [ id, id, repl ], that is,
in a different category of the interaction/reflexion pattern.

Template: [(S103), (S020), (S000)]

( id, id, repl )( or1, if2, or1 )

( bdisp! ( or1, if2, or1 )
( bdisp! or)
( bdsp! or true1 true1)    ––> true1
( bdsp! or false1 false1)  ––> false1

( bdisp! if )
( bdsp! if true2 true2)    ––> true2
( bdsp! if false2 false2)  ––> true2

( bdisp! or)
( bdsp! or true3 true3)  ––> true1
( bdsp! or repl (false3 false3))  ––> false1 
                                  (replication of or3 as or1)
Now, we observe no collision between the two results, true2/false1, therefore this

type of combination is realizable.
18.4.1 Typology of Boolean binary combinations

c.f. Morphogrammatik
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18.5 Application of extended logical abstractions

local negations
(bdisp! (truei))
                    ––> truei

(bdisp! (falsei))
                    ––> false1
(bdisp! (true(3)))
                    ––> (true1 true2 true3)

(bdisp! (fals(3)))
                    ––> ( false1 false2 fals3)

(bdisp! (noti truei))
                            ––> falsei

(bdisp! (noti falsei))
                            ––> truei, i= 1,2

mediated negations
(bdisp! (not1 true(3)))
                            ––> (false1, true3, true2)
                          
(bdisp! (not1 false(3)))
                            ––> (true1, false3, false2)

(bdisp! (not2 true(3)))
                            ––> ( true3, false2, true1)
                          
(bdisp! (not2 false(3)))
                            ––> ( false3, true2, false1)

Junctions, mono- and polyform
(bdisp! (and(3) true(3) true(3)))
                            ––> (true1, true2, true3)
                          
(bdisp! (and(3) false(3) false(3)))
                            ––> (false1, false2, false3)

(bdisp! (and(3) true(3) false(3)))
                            ––> (false1, false2, false3)

(bdisp! (and(3) false(3) true(3)))
                            ––> (false1, false2, false3)

(bdisp! (or(3) true(3) true(3)))
                            ––> (true1, true2, true3)
                          
(bdisp! (or(3) false(3) false(3)))
                            ––> (false1, false2, false3)

(bdisp! (or(3) true(3) false(3)))
                            ––> (true1, true2, true3)

(bdisp! (or(3) false(3) true(3)))
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                            ––> (true1, true2, true3)

(bdisp! ((and,or,or) true(3) true(3)))
                            ––> (true1, true2, true3)
                          
(bdisp! ((and,or,or) false(3) false(3)))
                            ––> (false1, false2, false3)

(bdisp! ((and,or,or) true(3) false(3)))
                            ––> (false1, true2, true3)

(bdisp! ((and,or,or) false(3) true(3)))
                            ––> (false, true2, true3)

Junctions plus transjunctions
(bdisp! ((trans,or,and) true(3) true(3)))
                            ––> (true1, true2, true3)
                          
(bdisp! ((trans,or,and) false(3) false(3)))
                            ––> (false1, false2, false3)

(bdisp! ((trans,or,and) true(3) false(3)))
                            ––> ( ( empt1 , false2, false3), true2, false3)
                            
(bdisp! ((trans,or,and) false(3) true(3)))
                            ––> (( empt1 , false2, false3), true2, false3)



18.6 Distribution of Distributive Boolean Lattices
Under the strict id-modus of distribution a strict logical parallelism without nega-

tions can be introduced. Lattices are important for knowledge representation (con-
ceptual graphs, Sowa, Wille) and data bases. Obviously, their distribution
involves a radical paradigm change in dealing with knowledge representations
and data bases. An object can appear as conjunctive and simultaneously as dis-
junctive depending of the viewpoint of thematization, reflecting its ambiguity in a
third mediating system.

Distributing distributive latices
Identity:       X * X == X

Commutativity:  X * Y == Y * X,   with *, + = {and, or}

Associativity:  X * ( Y * Z ) == (X * Y) * Z

Absorbtion:     X * (X + Y) == X,     

Distributivity: X * ( Y + Z) == (X * Y ) + (X * Z)

Modus ponens:   X, X impl Y ==> Y

To introduce a Boolean lattice we would have to leave the strict id-pattern and
involve additionally the super-operator perm.

Ldistr = (com, ass, abs, distr)           

L(3)distr : (L
1
distr , L

2
distr , L

3
distr )  ––––> L

(3)
distr

Some balanced examples

3-Identity:        X(3 *** X(3 == X(3)   with *, + = {and, or}

3-Commutativity:   X *** Y == Y *** X
                   X*+* Y == Y *+* X

3-Associativity:   X *** ( Y *** Z ) == (X *** Y) *** Z
                   X *++ ( Y *++ Z ) == (X *++ Y) *++ Z
                   X *+* ( Y *+* Z ) == (X *+* Y) *+* Z

3-Absorbtion:      X *** (X +++ Y) == X
                   X *+* (X +*+ Y) == X

3-Distributivity:  X *** ( Y +++ Z) == (X *** Y ) +++ (X *** Z)
                   X *++ ( Y + **Z) == (X *++ Y ) +** (X *++ Z)
                   X +*+ ( Y *+* Z) == (X +*+ Y ) *+* (X +*+ Z)

3-Modus ponens:    X(3), X(3) impl(3) Y(3) ==>(3) Y(3)

Models

As in the mono-contextural case of lattices interesting models in a corresponding
polycontextural set theory can be studied and applied.
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Template: [(S100), (S020), (S003)]
Pattern: ( id, id, id )
Topic: Boolean
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samba ( ARS, 3, zero )
     ( define zero (lambda ( f )
                           ( lambda  ( x )
                                x ))
      ( define zero (lambda ( f )
                           ( lambda  ( x )
                                x ))
      ( define zero (lambda ( f )
                           ( lambda  ( x )
                                x ))
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samba ( id,  ARS, 3, one )
   ( define one  ( lambda ( f )
                           ( lambda ( x )
                               ( f x )))
   ( define one  ( lambda ( f )
                           ( lambda ( x )
                               ( f x )))
   ( define one  ( lambda ( f )
                           ( lambda ( x )
                               ( f x )))
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sambba ( id, ARS, 3, three )
  ( define one  ( lambda ( f )
                           ( lambda ( x )
                              f (f ( f x ))))))
  ( define one  ( lambda ( f )
                           ( lambda ( x )
                              f (f ( f x ))))))
  ( define one  ( lambda ( f )
                           ( lambda ( x )
                              f (f ( f x ))))))

samba ( id, ARS, 3, zerop )  
  ( define zerop1 ( lambda ( n )
                           (( n ( lambda ( y )
                                     false1 ))
                            true1 )))
  ( define zerop2 ( lambda ( n )
                           (( n ( lambda ( y )
                                     false2 ))
                            true2 )))
  ( define zerop3 ( lambda ( n )
                           (( n ( lambda ( y )
                                     false3 ))
                            true3 )))

samba ( id1, ARS, 3, add )
           ( define add1   ( lambda (m n )
                                   ( lambda ( f )
                                        ( compose (m f ) (n f ))))
            ( define add2   ( lambda (m n )
                                   ( lambda ( f )

                                       ( lambda ( f )
                                        ( compose (m f ) (n f ))))
            ( define add3   ( lambda (m n )
                                   ( lambda ( f )

                                       ( lambda ( f )
                                        ( compose (m f ) (n f ))))



samba ( id, ARS, 3, succ )
  ( define  succ1    ( lambda (n )
                             ( lambda ( f )
                                 ( compose1  f ( n f ))))))
   ( define  succ2   ( lambda (n )
                             ( lambda ( f )
                                 ( compose2  f ( n f ))))))
   ( define  succ3    ( lambda (n )
                             ( lambda ( f )
                                 ( compose3  f ( n f ))))))

18.6.1 Second order numerical functions 

    samba ( id, ARS, 3, compose) 

            ( define compose1   ( lambda ( f g )
                                           ( lambda ( x )
                                                 (f (g x ))))
            ( define compose2   ( lambda ( f g )
                                           ( lambda ( x )
                                                 (f (g x ))))
            ( define compose3   ( lambda ( f g )
                                           ( lambda ( x )
                                                 (f (g x ))))
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18.6.2 Dissemination of numeric objects
As an application of the idea of proemiality I introduce the dissemination of 3 ab-

stract objects nat0. 

                            (zero ––> (nat ––> nat))  ––> nat0

dissemination(3)
nat0 

DISS(3) (object nat0) = object1nat0 § object2nat0 § object3nat0

object1nat0   ––> object1nat0
object2nat0   ––> object2nat0
object3nat0  ––> object3nat0

Natural system:
nat0(3) = nat0(1) § nat0(2) § nat0(3)

Sorts:
sorts(3) = sorts(1) § sorts(2) § sorts(3)

Operations: 
opns(3) = opns(1) § opns(2) § opns(3)

zero(3) : ––> nat(3) with
zero1:  ––> nat1
zero2:  ––> nat2
zero3:  ––> nat3             and

suc(3): nat(3) ––> nat(3) with
nat1 ––> nat1
nat2 ––> nat2
nat3 ––> nat3

opns

sorts

nat0

1

opns opns

sorts sorts

nat0 nat0

1 1

complexion(3)
nat0:



This triple clone of the above natural system produces naturally infinite series of
expressions of the following form if we apply the operations in a parallel way.

zero, suc(zero), suc(suc(zero)), suc(suc(suc(zero))), ...
zero, suc(zero), suc(suc(zero)), suc(suc(suc(zero))), ...
zero, suc(zero), suc(suc(zero)), suc(suc(suc(zero))), ...

In another notation of this results in 3-tuples of terms.
(zero, zero, zero), (suc(zero), suc(zero), suc(zero)), ...

11
N1

N2

A1 A1

A2 A2

12 N2

N1

11
12

N1

N1

U1 U2

N2

N2
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18.6.3 Super-operators in disseminated numeric systems

DISS(3) (object nat0) = object1nat0 § object2nat0 § object3nat0

object1nat0   ––> object1nat0
object2nat0   ––> object2nat0
object3nat0  ––> object3nat0

object1   ––> object1
object2   ––> object2
object3  ––> object3

ID(3) (zero(3)) : ––> nat(3) 
zero1:  ––> nat1
zero2:  ––> nat2
zero3:  ––> nat3

(ID PERM2 PERM3) zero(3) : ––> nat(3) with
zero1:  ––> nat1
zero2:  ––> nat3
zero3:  ––> nat2

(ID BIF1,3 ID)zero(3) : ––> nat(3) with    
zero1:  ––> nat1 simul nat2
zero2:  ––> nat2
zero3:  ––> nat3 simul nat2

(RED2 ID ID) zero(3) : ––> nat(3) with
zero1:  ––> nat2
zero2:  ––> nat2
zero3:  ––> nat3

In contrast to the purely parallel construction we have to introduce a more complex
notation for the general case.

Until now I have treated zero as an object and different types of zeros as objects
belonging to different contextures. This is a quite conservative introduction. In corre-
spondence to the idea of proemiality and polycontexturality, it is more appropriate to
think of zero as an action. In this sense zero is the notation of the action of beginning.
There are many beginnings but no single origin. Actions, and especially simultaneous
actions, are not necessarily connected with the notion of identity. In contrast, objects
are very close to the notion of identity. The classical concept of an object coincides
more or less with this notion of identity. Actions are not given as ontological entities,
therefore they have to be interpreted. An interpretation involves an interpreter, which
is a point of view. Because there is no single privileged point of view there is a multi-
tude of interpreters, interpreting successively or simultaneously the realizations of ac-
tions.



The Operator (ID BIF1,3 ID)zero(3) suggests that there are additionally to the
genuine objects of the systems objects from the neighbor systems too.

The first object of the application of the operator (ID BIF1,3 ID) to zero(3) is there-
fore:

[(zero, zero, #), (#, zero, #) (#, zero, zero)]

       (ID, BIF1,3, ID) (OP1, OP2, OP3)
    ––––––––––––––––––––––––––––––––––––––
   (OP1, OP2, #) (#, OP2, #) (#, OP2, OP3)

In this sense the Operator (ID, BIF1,3, ID) is only a perhaps misleading abbrevi-
ation of the above more explicit notation.

 Diagramm  7 Transition-Diagramm of the Operation (ID BIF1,3 ID)

M1 M2 M3 M1 M2 M3 M1 M2 M3

O1 O2

G120 G020 G023

# # # #

O3
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List-Topics
Lists as a data type are defined as compositions of ordered pairs, and generally of

n-tuples. A pair of a list is composed of a head and a tail. The head points to a data
item and the tail points to the next pair in the list. The tail in the last pair of the list points
to a special element called "nil". To be able to speak of a head and a tail of a pair is
possible only because the order between head and tail is pre-given, it is not really con-
structed by a lambda abstraction. The situation is not better as in mathematics where
the ordered pair is introduced axiomatically presupposing some tricks which are intu-
itively acceptable and are inventing a useful convention based on cultural agreements.

From A++
Lists are implemented as linked lists of pairs. A pair is composed of a head and a tail. The
head points to a data item and the tail points to the next pair in the list.
In order to work with pairs and lists the following abstractions are needed as a minimum:
    * cons the constructor of a pair
    * car the selector of the head of a pair
    * cdr the selector of the tail of a pair
    * nullp a predicate to check, whether the list is empty
    * pairp a predicate to check, whether the object is a pair.

( define cons  (lambda (hd tl)
                         ( lambda ( sel )
                               ( sel hd tl ))))
(define  nil (lambda (f)
                    true ))

( define car  (lambda ( l )
                      ( l true )))

( define cdr  (lambda (l)
                      ( l false )))
( define nullp  ( lambda (l)
                        ( l (lambda ( hd tl)
                                  false ))))
( define length  (lambda (l)
                            (if (nullp l)
                                  zero
                                    (add one ( length ( cdr 1))))))
( define remove
    ( lambda ( obj l )
       ( if ( nullp l )
             nil
             ( if ( equalx obj ( car l )
              ( remove obj ( cdr l )
               (( cons ( car l )  ( remove obj ( cdr l )))))))
( define  nth
  ( lambda ( n l )
    ( if ( equaln n one )
       ( car l )
        ( nth ( sub n one ) ( cdr l )))))

http://www.aplusplus.net/bookonl/

http://www.aplusplus.net/bookonl/


Mono-form operators are of the form (op1=op2=...=ops). They are homo-
gene in respect of their type of operation. 

samba ( thematize (cons, cons, cons)   lambda (3) (hd(3)  tl(3) )
                                   (define cons1  (lambda (hd tl)
                                          (lambda ( sel )
                                                ( sel hd tl ))))
                                    (define cons2  (lambda (hd tl)
                                          (lambda ( sel )
                                                ( sel hd tl ))))
                                     (define cons3 ( lambda (hd tl)
                                          (lambda ( sel )
                                                ( sel hd tl )))))

samba ( thematize (nil, nil, nil)   lambda (3) (f(3))
                                 (define nil ( lambda (f1)       
                                       true1))
                                  (define nil  ( lambda (f2)       
                                       true2))
                                  (define nil lambda ( lambda (f3)       
                                       true3)))))
samba ( thematize (cdr, cdr, cdr)  ( lambda (3) ( l(3))
                                       ( define cdr (lambda ( l )
                                                             ( l false)
                                                ( define cdr (lambda ( l )
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                                                                   ( l false)
                                                        ( define cdr (lambda ( l )
                                                                        ( l false)))))

samba ( thematize (car, car, car)  ( lambda (3) ( l(3))
                                       ( define car (lambda ( l )
                                                             ( l true)
                                                ( define car (lambda ( l )
                                                                   ( l true)
                                                        ( define car (lambda ( l )
                                                                        ( l true)))))
Short explicite notations:
samba((3), (id, id, id)) 
( thematize (car, car, car)  ( lambda(3) ( l(3)))
                                       
                                       ( define(3) car car car (lambda(3) ( l(3) )
                                                            
                                                            ( l(3) true(3))))))

Poly-form operators are of the form (op1/=op2=.../=ops). They are homogene
in respect of their type of operation. 

samba ( thematize (nil, cons, car)   lambda (3) (f(3))
                                   (define nil1 ( lambda (f1)       
                                                             true1))
                                    (define cons2  (lambda (hd tl)
                                          (lambda ( sel )
                                                ( sel hd tl ))))
                                      (define car3  ( lambda ( l )
                                                              ( l true3 )))
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18.6.4 Proemiality of poly-list operators
The basic concepts in SAMBA’S are not binary, but on the base of their proemiality,

there are ternary, quadruples or genuine, not reducible compositions of pairs. The pro-
emiality in poly-lists is strict structural and is not concerned with specific objects or ele-
ments of the lists. 

samba ( pair, 1) = (pair)                          
samba ( list, 1) = (list)

samba ( pair, 3) 
       samba ( pair )
             samba ( pair )
                 samba ( pair ) 

car (pair1) coinc car ( pair2)                  
car (pair1) coinc car ( pair3) 
car (pair1) exch  cdr ( pair2) 
car (pair1) exch  cdr ( pair3)  

cdr (pair1) exch  car ( pair2)
cdr (pair1) exch car ( pair3)
cdr (pair1) coinc cdr ( pair2)               
cdr (pair1) coinc cdr ( pair3)              comment: 
                                                       black arrow: order relation                              
car (pair2) coinc  car ( pair3)             red arrow: coincoidence relation    
cdr (pair2) coinc cdr ( pair3)              green arrow: exchange relation
car (pair2) exch  cdr ( pair3)              terms hd, tl are identical with themselves: id
cdr (pair2) exch  car ( pair3)              (not all arrows are drawn in the diagram)

Short:
car (pair1) coinc car ( pair2) coinc car ( pair3)
cdr (pair1) coinc cdr ( pair2) coinc cdr ( pair3)

car (pair1) exch cdr ( pair2) coinc cdr ( pair3)
car (pair1) exch cdr ( pair2) exch cdr ( pair3)
cdr (pair1) exch car ( pair2) exch cdr ( pair3)
cdr (pair2) exch car ( pair2) exch car ( pair3)            ????
Abstract objects of typ list.

 Diagramm  8 Symmetric mediation table of pair(2)

pair (2) hd1 tl1 hd2 tl2

hd1 id ord coinc exch

tl1 ord id exch coinc

hd2 coinc exch id ord

tl2 exch coinc ord id

NIL

NIL

hd1 tl1

hd2                   tl2

               tl3            hd3

pair1:

pair2:

pair3:



contexture
     names (=lists0)
        sorts
            element, list
        opn
           a, b, c, ..., z :               ––> element
           nil             :               ––> list
           cons            : element, list ––> list

Poly-lists are implemented as mediated patterns of lists of ordered pairs belong-
ing to different contextures. A pair is composed of a head and a tail. Poly-lists listi
and listj are mediated by the proemial relations of order, exchange and coinci-
dence of different loci. The head of each local list points to a local data item and
the local tail points to the next local pair in the local list. This is a minimal condition
for poly-lists.

A list is a 2-pointer object. A poly-list is a 2-pointer-2-"jumper" complexion or c-
object.

Basic operations on poly-lists

repl (pairi) = paij

exch (headi) = (tailj)
exch (taili ) = (headj)
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Transjunctional Patterns
Rules for transjunctions in ConTeXtures are based on the polycontextural rules of tran-

sjunctions as defined by the analytical tableaux method. These rules are not easy to
catch and in the literature they don’t find any proper treatment. The tableaux rules in-
troduced here goes a long way back into my own research and for some reasons I
haven’t published them – at least in this setting – until now. The different transjunction
rules of ConTeXtures have to be understood as possible transcriptions from the logical
thematization to a programming implementation. Transjunctions, together with junc-
tions and negations plus the super-operators, could surely be used directly to define a
poly-logical programming paradigm. This will be developed at another place. The job
to do here is to transcribe or translate these polycontextural tableaux rules into func-
tional lambda programs. That is, to make programs out of tableaux rules. As for all
formalisms some implicit conventions of reading and understanding formulas, like tab-
leaux, are involved. To produce the lambda programs in ConTeXture equivalent to the
tableaux rules some conventions, not always easily to make explicit, are involved, too.
Thus, there are different possibilities to implement the logical tableaux rules into lamb-
da or samba programs. In other words, it’s up to programmers to do it, if necessary,
better. Only their use in a practical environment of programming will lead to some stan-
dard forms accepted by emerging conventions. 

The tableaux rules of polycontextural logics are developed strictly in the spirit of Ray-
mond Smullyan’s pioneering work (1968). It has to be mentioned, that Smullyan’s ap-
proach was the only one who helped me to understand and develop polycontextural
logic. Neither Universal Algebra nor later Category Theory had been of much help on
a strictly inventional and creational level.
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confusing ??
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trans1 ( a b )(3):
( a a )1 ––> a1, a3,    ( a a )1 ––> ( sel1 a ), ( elect3 a )
( b b )1 ––> b1, a2
( a b )1 ––> b2, b3
( b a )1 ––> b2, b3
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Example : (or, trans, or)

samba ( (id, bif2, id3), ARS, 3, (or, trans, or) )

First step intro

( id1 (define or1 ( lambda ( a b )1
                   if1 ( a a b))))

( bif2 (define trans2 ( lambda (( a b )2, (a b )1, (a b )3)
                   if2 ( a a a ) 
                   if2 ( b b b )
simul
                   if1 ( a a b ) 
                   if1 ( a b a )
simul
                   if3 ( a a b ) 
                   if3 ( a b a )

( id3 (define or3 ( lambda ( a b )3
                   if3 ( a a b ))))           

(or, trans, or): ARS1 * ARS 2* ARS3 –––> ARS1 * (ARS2, ARS1, ARS3) * ARS3

Explicite: (or, trans, or): (ARS1 , . , .) *  (ARS1 , . , .) *  (ARS1 , . , .) –––>
                      
                             (ARS1 , . , . ) *  (ARS1, ARS2 , ARS3) *  ( ., . , ARS3 ) 
"*": mediation from samba

(or, trans, or) corresponds to the 3-contextural binary logical function of (disjunc-
tion, transjunction, disjunction).

Local vs. global definitions
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19.1 Tableaux Method for Transjunctions in G(3)

Rules for transjunctions in ConTeXtures are based on the polycontextural rules of tran-
sjunctions as defined by the analytical tableaux method. These rules are not easy to
crasp and in the literature they don’t find any proper treatment. The tableaux rules in-
troduced here goes a long way back into my own research and for some reasons I
haven’t published them – in this setting – until now. The different transjunction rules of
ConTeXtures have to be understood as possible transcriptions from the logical themati-
zation to a programming implementation. Transjunctions, together with junctions and
negations plus the super-operators, could surely be used directly to define a poly-logi-
cal programming paradigm. This will be developed at another place. The job to do
here is to transcribe or translate these polycontextural tableaux rules into functional
lambda programs. That is, to make programs out of tableaux rules. As for all formal-
isms some implicit conventions of reading and understanding formulas, like tableaux,
are involved. To produce the lambda programs in ConTeXture equivalent to the tab-
leaux rules some conventions, not always easily to make explicit, are involved, too.
Thus, there are different possibilities to implement the logical tableaux rules into lamb-
da or samba programs. In other words, it’s up to programmers to do it, if necessary,
better. Only there use in a practical environment of programming will lead to some
standard forms accepted by emerging conventions. The tableaux rules of polycontex-
tural logics are developed strictly in the spirit of Raymond Smullyan’s pioneering work
(1968). It has to be mentioned, that Smullyan’s approach was the only one who helped
me to understand and develop polycontextural logic. Neither Universal Algebra nor
later Category Theory had been of much help on a strictly inventional and creational
level.  Cf. http://www.thinkartlab.com/pkl/lola/PolyLogics.pdf

 Diagramm  9 Tableaux  rules for (X trans and and Y)

These tableau rules for the logical function (trans, and, and) gives the full information
about the definition and the interaction of the local parts of the global function.            
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19.1.1 Transjunctions in ConTeXtuers, continuations
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Contextures as names of the lambda abstraction. Contextures can be named and
are, at once, the locus or frame of names and the naming process. This is introduced
from the local viewpoint of contexture2.

And conditional if.

Instead of: lambda (contextures) samba (contextures)  ??

samba id bif id

thematize or trans
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( ,
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(
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19.2 General pattern for ( bif, bif, bif )-modus of interaction

 Diagramm  10 Logical Transjunctions

This is the scheme for the so called total transjunction in polycontextural logics.
Depending on the conditions "cond" the different total transjunctions are de-

fined. They are traditionally called conjunctive, disjunctive, implicative, replica-
tive, etc. transjunctions. The distinction between disjunctive and conjunctive
transjunctions comes into play for m>=4 (Kaehr, Pfalzgraf).

It is well known that total transjunctions of any complexity can have the proper-
ties of quasi-algebras and have a nice representation as Latin squares (Kaehr
1976).

Formula is wrong: (a a a ) per subsystem !!!
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( trans, trans, trans ):

trans1: cond–a b in O2 and O3
total         : if a a b , if a b a   ::  ( 1 3 3 2 )
implicative: if b a b , if a b a   ::  ( 1 3 1 2 )
replicative: if a a b , if b a b   ::  ( 1 1 3 2 )

trans2: cond–a b in O1 and O3
total         : if a a b , if a b a   ::  ( 2 1 1 3 )
implicative: if b a b , if a b a   ::  ( 2 2 1 3 )
replicative: if a a b , if b a b   ::  ( 2 1 2 3 )

trans3: cond–a b in O1 and O2
total         : if a a b , if a b a   ::  ( 1 2 2 3 )
implicative: if b a b , if a b a   ::  ( 1 2 1 3 )
replicative: if a a b , if b a b   ::  ( 1 2 1 3 )

Tableaux logic representation of the total tranjunction ( trans, trans, trans )



19.3 General pattern for (id, id, red )-modus of interaction

Pattern: [S101, S020, S000]
Interactivity:  [(id, empt, repl) (emt, id, emt) (emt emt empt)
Constellation: [(or, empt, and) (empt, impl, empt) (emt emt emt)]   
Topic: Binary Boolean

 NOT REPLICATION!!! REDUCTION!!!

( or impl and ) as (id, id, red)
S1 ––> S1  : id1
S2 ––> S2  : id2
S3 ––> S1  : red31, reduction S3 to S1

The definition at O1M1 is complete: head plus body. It is not modeling a reflec-
tional, that is, replicative situation but a reduction from O3M3 to O1M3. Therefore
the bracket presentation is correct.
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Pattern: [S111, S000, S000]
Interactivity: [(id, repl, repl) (empty) (empty)]
Constellation: [(or impl and) (empty) (empty)]
Topic: Binary Boolean

( or impl and ) as ( id red red ): S123 ––> S111

!!! not repl but red !!!?

Tableau for ( or impl and ) (S111)

samba id repl repl horizon

thematize

( ) ( ,� ,� )

(

3 −

 oor impl and

define contextures

� � )

� ��������������������������

( )

���(�

define or

lambda a b

i

 

    

ff a a b

define impl

lambda b t f

� � ��)

( �� �)








 

  

��������������(��� �)b t f

defi
























nne and

lambda a b

if a b a

 

�( ��)

����(� � �� �)


















































∅

∅

�

����

∅∅









































∅

��

����

∅∅

∅









































































































































Permutational Patterns

20    General pattern for (id, perm, perm )-modus of 
interaction

Matrix ( id, perm, perm )

20.1 System changes with Negations

To understand the mechanism of system changes within negations it is necessary
to have a new look at our Booleans. They are distributed and mediated pairs of
truth values.

Boolean truth values(3)

It is easy to see that a negation in one system is producing permutations or trans-
versions in other systems. 

N1: S123 ––> S132

With  N1 (T1,T2,T3) => (F1, T3,T2) and N1 (F1, F2, F3) => (T1, F3, F2)

But this is only half the cake. Without considering the reflectional complex archi-
tecture of the system, this is perfectly correct and a lot of work has been done under
this presumption. One part of that presumption is the neglection of the parallelism
of the formal processes. This point is not only highly visible for transjunctional con-
structions but comes into focus also for strictly junctional and negational relations
and procedures.

From the viewpoint of a reflectional and processual understanding we have to
make a distinction between the values of a systems an the same values from an-
other system. They are not identical because they have another "history" , that is,
their formulas start with a different root, they can not been be taken as identical
but as the same. Their sameness demands for a special locus to place them other-
wise they will collide with the genuine values or objects of their guest system.

System change for negation non1 in a reflectional architecture: 

S123 ––> S132:  (S100, S020, S003) ––> (S100, S003, S020)

T1 F1

T2                   F2

                F3            T3
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20.2 Boolean topics: Negations
Negations non1

samba ( define not1 (lambda(3) (sel1)
id (sel ( false1 true1 ))
perm ( false2 true2 )
perm ( false3 true3 )

samba(3) ( define not1( lambda1 ( sel1 )
  (id perm perm ( sel1 (true(3) false(3)))))

bdisp! samba ( define not1 (lambda(3) (sel1):
bdisp! id (sel ( false1 true1 )  ––> bdisp! not1 (true1 false1) ––> (false1 true1)
bdisp! perm ( false2 true2 ) ––> bdisp! perm (true2 false2) ––> (true3 false3)
bdisp! perm ( false3 true3 ) ––> bdisp! perm (true3 fals3) ––> (true2 false2)

(bdisp! (not1 true(3)))
                            ––> (false1, true3, true2)
(bdisp! (not1 false(3)))
                            ––> (true1, false3, false2)

samba ( (id, perm) ARS, 3, not1 )
( id1 (define not1 ( lambda ( sel )        ( sel only in S1 and not also in S2,3!!)
                    sel ( false1 true1 ))))
( perm2 (define not1 ( lambda ( sel )           (perm2 (define not1 (lambda (sel2)
                    sel ( false3 true3 ))))                                  sel2 ( false2, true2)))) –> S3
( perm2 (define not1 ( lambda ( sel )           ( perm2 (define not1 ( lambda ( sel )    
                    sel ( false2 true2 ))))                                 sel ( false3 true)))

link: Boolean (id, id, id )
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If a1 take (false, true)1 (= negation as inversion: inv(true, false)1)
If a2 take or go to (true, false)3
If a3 move to (true, false)2

define perm2 (a(3))
           lambda (a2)
                     a3

Negation non2

samba ( (id, perm) ARS, 3, not2 )
( perm2  (define not2 ( lambda ( sel )
                    sel ( false3 true3 ))))
( id2 (define not2 ( lambda ( sel )
                    sel ( false2 true2 ))))
( perm2 (define not2 ( lambda ( sel )
                    sel ( false1 true1 ))))

define not3 ( lambda ( not1 )
                     lambda ( not2 ) )
                        ( not1 (not2 ( not1 )))
define not3 lambda ( not1 not2 )
                       compose (  not1  not2  not1 ) 
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20.3 Distribution of Boolean lattices
Additionally to the strict id-modus of distribution the laws of negations has be

introduced to define Boolean Lattices.
Distributing distributive latices

Identity: X * X ==X

Commutativity: X * Y == Y * X,    *, + = {and, or}

Associativity: X * ( Y * Z ) == (X * Y) * Z

Absorbtion: X * (X + Y) == X,     

Distributivity: X * ( Y + Z) == (X * Y ) + (X * Z)

Negations

Idempotence: noni ( nonj (X(3)) = X(3),  i=j=1,2 

Cyclicity: non1 (non2 (non1 (X(3)))) = non2 (non1 (non2 (X(3))))

Definitions:  non3 (X(3)) = non1 (non2 (non1 (X(3))
                                   = non2 (non1 (non2 (X(3))

DeMorgan laws for 3-Boolean lattices

    X***Y    = non3 (non3 (X(3)) +++ non3 (X(3))
    X *+* Y  = non3 (non3 (X(3)) +*+ non3 (X(3))

Ldistr = (com, assoc, abs, distr)

L(3)distr : (L1distr , L2distr , L3distr )  ––––> L(3)distr

Permutation and identity

A distribution of Boolean lattices over 3 contextures belongs to the template
[(S100), (S020), (S003)] and the pattern [ id, id, id ].

But the negations are using the superoperator perm. Only because of the sym-
metric definition of the DeMorgan laws this permutation is transformed to the iden-
tity of 

id: perm (perm (id) )) = id
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 Diagramm  11 Distribution of Boolean, distributive, Boolean lattice
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21   Application of extended logical abstractions
local negations
(bdisp! (truei))
                    ––> truei

(bdisp! (falsei))
                    ––> false1
(bdisp! (true(3)))
                    ––> (true1 true2 true3)

(bdisp! (fals(3)))
                    ––> ( false1 false2 fals3)

(bdisp! (noti truei))
                            ––> falsei

(bdisp! (noti falsei))
                            ––> truei,       i= 1,2

mediated negations
(bdisp! (not1 true(3)))
                            ––> (false1, true3, true2)
                          
(bdisp! (not1 false(3)))
                            ––> (true1, false3, false2)

(bdisp! (not2 true(3)))
                           ––> ( true3, false2, true1)
                          
(bdisp! (not2 false(3)))
                            ––> ( false3, true2, false1)

Junctions, mono- and polyform
(bdisp! (and(3) true(3) true(3)))
                            ––> (true1, true2, true3)
(bdisp! (and(3) false(3) false(3)))
                            ––> (false1, false2, false3)
(bdisp! (and(3) true(3) false(3)))
                            ––> (false1, false2, false3)
(bdisp! (and(3) false(3) true(3)))
                            ––> (false1, false2, false3)

(bdisp! (or(3) true(3) true(3)))
                            ––> (true1, true2, true3)
(bdisp! (or(3) false(3) false(3)))
                            ––> (false1, false2, false3)
(bdisp! (or(3) true(3) false(3)))
                            ––> (true1, true2, true3)
(bdisp! (or(3) false(3) true(3)))
                            ––> (true1, true2, true3)

(bdisp! ((and,or,or) true(3) true(3)))
                            ––> (true1, true2, true3)
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(bdisp! ((and,or,or) false(3) false(3)))
                            ––> (false1, false2, false3)

(bdisp! ((and,or,or) true(3) false(3)))
                            ––> (false1, true2, true3)

(bdisp! ((and,or,or) false(3) true(3)))
                            ––> (false1, true2, true3)

Junctions plus transjunctions
(bdisp! ((trans,or,and) true(3) true(3)))
                            ––> (true1, true2, true3)
                          
(bdisp! ((trans,or,and) false(3) false(3)))
                            ––> (false1, false2, false3)

(bdisp! ((trans,or,and) true(3) false(3)))
                            ––> ( ( empt1 , false2, false3), true2, false3)
                            
(bdisp! ((trans,or,and) false(3) true(3)))
                            ––> (( empt1 , false2, false3), true2, false3)



22   Arithmeltical topics

samba ( (bif1, id, id), ARS, 3, zero(3) )
     ( define zero1 (lambda ( f )
                           ( lambda  ( x )
                                x ))
      ( define zero2 (lambda ( f )
                           ( lambda  ( x )
                                x ))
simul
      ( define zero1 (lambda ( f )
                           ( lambda  ( x )
                                x ))
      ( define zero3 (lambda ( f )
                           ( lambda  ( x )
                                x ))

ndisp! : ((0, . , . ), (0, 0, . ), ( . , . , 0))

samba ( id1, bif2, id3, ARS, 3, compose) 
       samba1 compose
       samba2 compose . simul. samba1 compose    
       samba3 compose

samba ( bif1, ARS, 3, succ )
  ( ID1 ( define  succ1    ( lambda (n )
                             ( lambda ( f )
                                 ( compose1  f ( n f )))))))
  ( BIF1 ( define  succ2   ( lambda (n )
                             ( lambda ( f )
                                 ( compose2  f ( n f ))))))
simul
                           ( lambda (n )
                             ( lambda ( f )
                                 ( compose1  f ( n f ))))))
   ( ID3 ( define  succ3    ( lambda (n )
                             ( lambda ( f )
                                 ( compose  f ( n f ))))))

bif2, red1, red2, perm1, perm2 : trivial.
bif1 ( succ(3)      succ1
                         succ2 simul succ1
                         succ3)
samba ((trans, id, id), ARS, 3, (transpose compose compose))
  ( perm ( define transpose1   ( lambda ( f  )1
                                                 transition (f ))        general
 ( id ( define compose2   ( lambda ( f g )
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                                           ( lambda ( x )
                                                 (f (g x ))))
( id  ( define compose3   ( lambda ( f g )
                                           ( lambda ( x )
                                                 (f (g x ))))

samba ( ARS, 3, neibgh )
 ( perm ( define  neibgh1 ( lambda (n )                 numeric
                             ( lambda ( f )
                                 ( transpose1  ( n f )))))))



23   General pattern for (id, repl, id )-modus 
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Why not jump from Y to Why?

24   Y-Operator

( define Y                              
   (lambda (f)
      ((lambda (x)
          ( f (x x )))
       (lambda ( x )
          ( f ( x x ))))))

24.1 Distributed Y-Operators

Pattern: [(S100), (S020), (S003)]
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24.2 Why-operator

Sup-ops (id, repl, id) defines the pattern: [(S100), (S120), (S103)]
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24.3 Combined Y-Why-operators

 Diagramm  12 Most explicite exposition of (WhyYY), vertical

Pattern
global: Why in systen S1 replicated over S2 and S3: [S100], [S120], [S103]
local: Y in systen S2 and S3 : [S020], [S003]
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 Diagramm  13 Distribution pattern for WhyYY

Distribution of Why and Y over 3 loci: (Why1, Y2, Y3)
The operator Why is defined as a reflectional distribution over the loci S11, S21

and S31. The Why-operator is not a single identity, but distributed and mediated
over 3 different neighbor-systems which are reflecting it. This is ruled not by iden-
tity, but by sameness. The defining part is not simply iterated at the same locus, as
it has to be done for the Y-operator, but reflected or alterated over 2 different mir-
roring loci. The third locus S31 is the place-holder for a comparison between the
results of the 2 loci.

The operator Y-operators Y2 and Y3 are allo-referentially defined at their own
loci, S22 and S33, that is, without reflection onto neighbor systems. They are what
they are: Y-operators in their singular identity realized at different places.
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F. Poly-Topics

25   Conditions of mediation

ConTeXtures are based on mediated contextures. The mediation is realized by the
proemial relation. The question arises which topics can be combined and mediated.
Are there limits in the combination of different topics? Can we freely combine and me-
diate, say numeric, symbolic, Boolean and other topics together? It has to be studied
which poly-topic combinations are realizable in ConTeXtures and how they are imple-
mented.

In this question of possible mediations of different topics and programming styles
here are two situations to be considered. One is given in architectonics with commu-
tative complexity, say situations with more than 3 contextures. In this situation there are
no limits of combinations for some contextures because they are separated and thus
their objects are disjunctively separated, too. Say, the topics of system1 and the topics
of system4 are independent of each other because their is a "mediation gap" between
them. The other situation is given with closely mediated system, there conditions of me-
diation are restricting the combinatorics of mediation of different topics. Say, system2
and system4 or system1 and system2 are closely connected with each other and there-
fore asking for strict mediation.

In ARS, and similar approaches, topics are based on general objects, called by Cur-
ry obs. Obs are primary to the constructed topics like Booleans and Church Numerals.
Topics are not pre-given but constructed, more precisely, re-constructed by the lambda
and combinatory logic operations.

Proemiality between topics is defined by the relations of order, exchange and coin-
cidence. To mediate singular topics over contextures the relation of exchange is of cru-
cial relevance. It has to be guaranteed and constructed. The order relation is given
intra-contexturally by the main relations and elements of the topics. The coincidence
relation which is controlling the categorial adequacy of the mediation is automatically
realized because of the sameness of the distributed topics. That is, Booleans distributed
over different places remain Booleans and are therefore fulfilling the criteria for cate-
gorial adequacy.

For poly-topical mediations, the situation has radically changed. The topics are cat-
egorial different. And the question, how are the mediated has to be answered. The
answer seems to be given by the fact that also for ConTeXtures the primary objects are
not the topics but the c-obs, that is, the complex formal obs. Thus, the mediation of dif-
ferent topics is based on the mediation of the obs to c-obs.



25.1 Interactional poly-topics
Interactional poly-topics can appear inside of a programming paradigm or can

be the at the base of different paradigms. Poly-topics as such are not defining a
programming style but can support their definition.
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This poly-top-
ics example
shows a dis-
t r ibut ion of
numeric, list
and Boolean
topics. Topics
a re  under -
stood as in-
terpretations
or construc-
tions based
on the com-
plex premial
ob jec t s ,  c -
obs. It has to
be  shown
that this con-
stellation of
topics is real-
izable on the
base  o f  c -
obs.  Addi-

tionally, the topics num and list, with zero and nil, are unary, while the Boolean and is
binary.
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25.2 Reflectional poly-topics

Metamorphic reflections

Reflection can change the meaning of an object. Objects are not defined as
identical obs in the sense of an ob is an ob, but by the as-category: c-ob1 as c-
ob2 is c-ob3.

Reflection is using the statement defining the object and the use is defining the
meaning of the object. Reflection and contemplation or introspection of an object
can produce the insight that the meaning of the object under consideration is
changing.

The examples shows that the reflection interpreted an object as the number zero
belonging to the topic numerals. A second reflection considers the same object not
as a numeral but as nil belonging to the topic of lists. Reflection has not to come
to a still stand and can go further and with the interpretation and realizing that the
object can be understood as belonging to the topic Booleans and appearing as
the truth-value true. Therefore the object is conceived as having a numerical, a sym-
bolic and a Boolean meaning.

Conditions of metamorphic reflections

Non-metamorphic reflection repeats the full structure of the formula over all ranks
of reflections. If a n-ary Boolean function is reflected at a starting level it remains
a n-ary Boolean function at all ranks of reflection (introspection, contemplation).

This could be a condition for reflectional activities.
But the idea of metamorphic reflection is offering not only to change the topics

of reflection but also the structure of the reflected formula. That is, a ternary func-
tion or relation can change in the process of reflection to a binary function, e.g.,
if reflection is producing reduction.

At the end of this contemplation it is not impossible that reflection as a form of
abstraction and thematization can jump out of the very game of the ConTeXtural
framework and continues in another scenario, say morphogrammatics, reflecting
the morphic aspect of the reflected situation, "morphizing" the thematizing pat-
terns of ConTeXtures.
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Reflectional poly-topics scheme over the
3 internal contextures.
Because of its poly-topics the full head/
body structure has to be distributed/rep-
licated over the internal reflectional loci.
This guarantees the possibility of strict
poly-topics in the switch from one reflec-
tional level to the next without excluding
the case of repetition of the same topic
over the different places.

As an example, the internal distribution
of the topics Number, List, Boolean is
shown as (zero, nil, false) at the locus O1.

Thematize ( zero, nil, false ) is distribut-
ed internally over 3 places by the super-
operator replication (repl).

There is a slight ambiguity in the nota-
tion produced by the abbreviated form,
but ruled properly by replication. Other-
wise we would have to write the full
scheme for thematize: 

[(zero, nil, false) ( ., . , .) (., ., .)]
Nevertheless it has to be proven that

this constellation is not violating the struc-
tural conditions of mediation.

The significance of this reflectional poly-
topic constellation is that what started the
reflection as the number zero turns out to
be on a further level of reflection, but well
connected to the start, as a list topic, nil.
The comparison of the reflexion of both
models, the number and the list object,
appears as a Boolean object, false, ac-
cepting the relevancy of all previous meanings of the objects as different topics at dif-
ferent places. The example is not considering neighbor systems, thus, they are empty. 
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25.3 Contextualizing the define operator by the AS-abstraction
Again, the as-abstraction can be defined intra-contextural, contectualizing

names from context to context inside a contexture and trans-contextural, contextur-
alizing names between different contextures. The step forward in formalizing poly-
contextural programming is: From "define name" to "define a name as a name".

The steps of interpretations of names, namei as namej, can be made explicit by
introducing the as-abstraction in the "name giving" procedure. Thus, the innocent
identifier "define name" has to be enlarged to "define namei as namej"

This AS-function I have introduced as an extension of the OOP categories: IS and
HAS. But it is introduced at the very beginning of the lambda construction "define
name" as it appears on the base of the proemial relationship. The as-function is
also   crucial for the definition of metamorphic reflections.

Not only contextures can be named and names be contexturalized but also
names can be named as other names between and inside of contextures in the
sense that namej refers to another context or contexture than namei, both belonging
to the complexion involved in the play. Therefore, the referentiality and transparency of
ConTeXtures is not restricted to any hierarchy of tectonics.

Levels and meta-levels of reflection are connected by means of proemiality real-
izing its structural rules of exchange, order and categorial correctness (coinci-
dence) avoiding wild jumps, structurally possible, but not analyzed in this context.

Thus, "define name" is an abbre-
viation of "define namei as namej"
with i=j.
– replication repl, in this example,
is a metamorphic replication and
not replicating isolated configura-
tions.
Exchange relations:
– "define zero" is "define zero as
zero", as the start of the levels. It
could itself be produced by a pre-
decessor level.
as: define zero in contexture1.1 as
zero in contexture1.1

– "define nil" is "define zero as
nil",
as: define zero from contexture1.1
as nil in contexture1.2

– "define false" is "define nil as
false".
as: define nil from contexture1.2
as false in contexture1.3

This change of identity of the topics from one contexture to another by reflection/
replication is producing a chiastic chain guarantying the connectedness of the
step-wise reflection of the whole. A neighbor system, S1 or S2, could reflect in its
contexture this fact of chiastic connectedness.
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G. Dissemination of Programming Styles
The minimal condition for the dissemination of different programming paradigms is

given by the poly-contextural matrix. Different paradigms have to be placed, they have
to take place and to realize themselves at an epistemological place.

26   How are programming paradigms defined in ARS?

26.1  Object-oriented programming style in ARS

It is beyond the scope of this study to go into the details of the definition of the OOP
terminology on the base of ARS. This can be found online at the A++ web site.

The emphasis is on constructors:
 
Constructors
 In most object oriented programming languages, classes are defined by special constructs
and the constructor generates an object according to the class definition. These languages
can also be labelled `class oriented'. 

 In A++ however, classes are defined entirely by constructors, which like in other languages
creates objects as instances of the specific class.

Components of a constructor 
• input arguments 
 The input arguments passed to a constructor are used to initialize the attributes. 
•  definition of the attributes 
 Normally all attributes are defined in A++ by performing an abstraction in the first of the
two possible forms, i.e. using the key word `define'.
 •  definition of the methods 
 The methods are of course lambda-abstractions and must be given a name using `define'.
•  definition of the special method `self' 
 This method is a very special lambda-abstraction, because it is returned by the constructor
as the closure representing the entire object. As closure being defined and contained in the
constructor it has access to everything in the constructor, i.e. all attributes and methods. This
is why `self' can serve as a dispatcher, receiving the messages sent to the object, interpret-
ing them and mapping them to calls to the corresponding methods.
•  return value 
 The return value of the constructor is the lambda-abstraction `self' as described above.

http://www.aplusplus.net/bookonl/node57.html

http://www.aplusplus.net/bookonl/node57.html


26.1.1 SELF at the edge of a self-referential calculus
The method ’self’ allows to introduce the distinction between intra-contextural

and trans-contextural self-referentiality. ARS is thanks to the method ’self’ involved
in self-referentiality which seems not to be usual for programming concepts. This
ARS is in its tectonics not strictly hierarchic but has important features of circularity
in the sense of reflection-into-itself without producing contradictional conflicts.

It is only one more step in thematizing the power of self if it is allowed to self-
thematize its own frame, which is ARS as a whole. ARS as itself an object. Instead
of putting the reflected ARS into itself it can be localized, positioned on a own lo-
cus, different to the reflected system ARS opening up the possibility of mediation
of the distributed systems. The method ’self’ is therefore not restricted to a dispatch-
er but open to distribution.

26.2 Imperative programming style in A++
 The abstraction `while'

It is remarkable, that such a 'while'-construct can be defined in A++ as a lambda-ab-
straction. In most of the other programming languages such an attempt would be in
vain. 
 It should be noted however that all the statements to be repeated are bound together
by one `lambda'. This is necessary because `while' is defined as a lambda-abstraction
expecting two arguments. One argument stands for the condition that controls whether
another iteration should occur and the second variable stands for the block to be re-
peated. The possibility to define lambda-abstractions with a variable number of argu-
ments is not implemented in A++ right now.            http://www.aplusplus.net/bookonl/
node172.html
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26.3  Games of inscribing programming styles

 Diagramm  14 Hierarchical foundation of programming paradigms

 Diagramm  15 Heterarchical and hierarchical  foundations programming paradims
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26.4 Imperative programming style in ConTeXtures

The example shows the distribution of the while-construct over two contextures in
the mode of computation at the places of the contextures. That is, without interac-
tion and reflection between contextures.
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This is the while-test for a single loop involved
at a place of a contexture. .

What could it mean to distribute the while-construct in an interactive and a reflection-
al manner?

Each loop starts with the decision made by the elector "elect" to stay in the contexture
of the construct or to leave the contexture of the construct and to switch to another con-
texture which has realized the same while-construct or another while-construct or even
something different. This is realized by the double function of the operator "if". The con-
ditional if includes the intra-contextural selector "sel", but in polycontextural environ-
ments the function of selection can change to the function of election (of a new
contexture). This jump is not yet implemented in our first example of the distribution of
the while-construct over two contextures, but the conditions for the jump are given.

What we need now is a new condition (if d [elect contexture2.1]), which forces the
selector to decide the procedure to leave the loop, to let it jump and continue in another
contexture. In the example, the jump leads from contexture1.2 to contexture2.1. The
third contexture3.3 may reflect this mechanism between both contextures. It could re-
flect if this jump happens or not, thus it could be realized by Boolean functions.
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27   OOP style programming in ConTeXtures

27.1 Root and self

• definition of the special method `self' 
 This method is a very special lambda-abstraction, because it is returned by the con-
structor as the closure representing the entire object. As closure being defined and con-
tained in the constructor it has access to everything in the constructor, i.e. all attributes
and methods. This is why `self' can serve as a dispatcher, receiving the messages sent
to the object, interpreting them and mapping them to calls to the corresponding meth-
ods.

http://www.aplusplus.net/bookonl/node61.html

As it is well known, OOP is a highly hierarchical enterprise.
To give introduce first steps to a heterarchic structuring of OOP we can reduce

our efforts to a deconstruction of the operator "self" and its connection to the
"base-object" which is the root-object of the hierarchy.

As introduced in DERRIDA’S MACHINES there are good reasons to heterarchize
hierarchically organized systems.

27.2  Relation between classes
 The duality of relations below corresponds to the duality ̀ inheritance' and ̀ delegation'
we have just discussed. 
•  IS-Relation 
 This relation has to do with inheritance: A dog is an animal. A car is a vehicle. Because
a dog is animal it has all the features of animal and of course on top of that its own.
•  HAS-Relation 
 In the system using delegation described above we have seen that an object must have
an instance of its super-class in its attributes in order to be able to delegate an unknown
message to a higher level.

 Of course an object may have instances of several super-classes making it easy to im-
plement multiple inheritance.

http://www.aplusplus.net/bookonl/node69.html

The IS- and HAS-relations are surely intra-contextural relations and all their con-
sequences for the programming system, too.

Problems with IS- and HAS-relations

All that sounds well established and not entangled with any problems which
could lead to a questioning of the concepts involved. But as usual things are not
so simple at a second glance. Two largely unsolved main problems are well
known: polysemy and multiple inheritance.

The known strategies to deal with polysemy are all leading to an infinite regress.

The proposed solutions to multiple inheritance are leading, taken seriously, to
paradoxes and contradictions.

As a first step to enhance the classical concept of ontology which is behind the
OOP approach we should introduce a new kind of relations: AS-relation.

http://www.aplusplus.net/bookonl/node61.html
http://www.aplusplus.net/bookonl/node69.html
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• AS-Relation
An object X, thematized as an object Y, is an object Z.

The statement "A dog thematized as a dog is a dog" is a realization of the form "X
as X is X".

It is easy to understand, that the classic ontological identity formula "X is X", which
is used as the base of "everything", is an abbreviation of the reflectional form "X as X
is X".

This classic-ontological way of thinking is guiding everything in computer science
and programming and is not restricted to the case of OOP. But in practice, the real life
of programming looks quite different. It starts even at the very beginning of computing
with the violation of its ontological principle. Take the use of programs AS data and
the use of data AS programs. Or the interpreter as a program and the program as an
interpreter. No problem! Yes, but also no theory of this practice.

An animal shelter is an animal shelter. And we got the program to define the behav-
ior of it. But an animal shelter as a (temporary) shelter for fighting soldiers is surely not
an animal shelter anymore. Not only by the substitution of the reference but also by its
functionality. So we need a new program "soldier shelter" and then, because this was
only of temporary use, a new program for the transitions between both functionalities,
the animal and the soldier shelter. But we can also have the situation of a simultaneity
of both, at once animal and soldier shelter. And so on.

http://www.aplusplus.net/bookonl/node142.html

http://www.aplusplus.net/bookonl/node142.html
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27.2.1 Bank account as a simple example

 Diagramm  16                                              Modules of bank account
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27.2.2 Analysis and Comments
Why should we heterarchize this bank account model?
As we can see, all the modules are quite autonomous defined and embarrassed only

by the clam of self which is organizing the modules/objects into a hierarchic order to
function as a OO program.

One reason could be the constellation of many different accounts belonging, say to
the same user. For each account the particular objects with their specific attributes has
to be defined and put together in some kind. 

The accounts can differ and change over time on all parametric levels: currency, type
of printing, etc. In a extreme situation they can even differ in their arithmetics and logic
of the accounts, and nevertheless they have to cooperate and work as a complex ac-
count.

In a heterachic setting, new features and new modules can easily added and old
modules can put to sleep without costing the system anything.

This can be done more efficiently than in re-programming the users accounts into one
big new OO constellation. Anytime the user is changing the attributes or the number
of accounts this procedure has to be repeated.

This kind of flexibility of modularization surely was a main attempt of OOP.
ConTeXTures differs from OOP in choosing additionally to the hierachic organization

of the objects the new organizational dimension of heterarchy which deliberates the
modules from their hierarchic encloser and offers space for more autonomy and inter-
activity with the involvement of contextures.

In other words: the root or self is simply an object next to other objects.
Ontologically speaking this says that the whole is taken as a part in another contex-

ture.
The connection between different objects in different contextures is not a link but an

interaction between contextures.
Even a single class, here account, can be put into a heterarchic setting reflecting its

intrinsic structure. This may lead to data based parallelism.

 Diagramm  17 Metapattern of bank account

bank account

balance deposit withdraw print         self       



y p g g

 Rudolf Kaehr November 24, 2005 11/24/05 DRAFT  DERRIDA‘S MACHINES 140


