



 Rudolf Kaehr Dezember 26, 2005 7/27/05

DRAFT

DERRIDA‘S MACHINES 0

DDDEEERRRRRR IIIDDDAAA ’’’ SSS MMMAAACCCHHH IIINNNEEE SSS PPPAAARRRTTT III III III

BB YY TT EE SS && PP II EE CC EE SS

ooff

PPoollyyLLooggii ccss ,, mm--LLaammbbddaa CCaall ccuu ll ii ,,
CCoonnTTeeXXttuurreess

PolyLogics.

Towards A Formalization of
Polycontextural Logics



 by Rudolf Kaehr

ThinkArt Lab Glasgow Hallowe’en 2005

"Interactivity is all there is to write about:

it is the paradox and

the horizon of realization."

*Sponsored, partly, by the German Software ThinkTank

ALGoLL AG

, Munich, Germany .



 Rudolf Kaehr Dezember 26, 2005 7/27/05

DRAFT

DERRIDA‘S MACHINES 1

PolyLogics.

Towards A Formalization of
Polycontextural Logics

A. Rhizomatics for PolyLogics

1 Problems with logic and the logics of problem soving

1.1 A motivational scenario 6

2 From Propositions to Glyphs

2.1 Abstracting propositions 10
2.2 Generating contextures out of scriptures 11
2.3 Sentence vs. textures 12
2.4 Signs vs. Patterns 13
2.5 Contextures vs. Names 13

3 More Metaphorics

3.1 Tree farming of colored logics 14
3.2 Preliminary Comments 16

4 Architectonics

4.1 Proemial relationship of mediated systems 18

B. General Framework of PolyLogics

1 General Tableaux Scheme for G(3)

1.1 Proemiality of logical concepts 29
1.2 Interactional and reflectional logics 30

2 Syntactical structures for PolyLogics

2.1 Generel remarks 31
2.2 Balanced syntax 32

C. Tableaux rules for PolyLogics

1 Tableaux rules for junctions

1.1 Pattern [id, id, id } 34
1.2 Pattern [id, red, id 35
1.3 Tableaux rules for transjunctions 39
1.4 Rules and Definitions in PCL

(3) 51

1.5 Tableaux proofs in PolyLogics 53
1.6 Tableaux proofs for transjunctional constellations 60
1.7 Term representation of formula development H1 64
1.8 General Strategy 68
1.9 General term rules 71



 Rudolf Kaehr Dezember 26, 2005 7/27/05

DRAFT

DERRIDA‘S MACHINES 2

D. Unification for PolyLogics

1 Generalized Smullyan Unification for PolyLogics

1.1 General unification rules 74
1.2 Classification of unificators 76
1.3 General rules and tableaux rules 84
1.4 Patterns of unification 85
1.5 Contradiction and incompatibility 86



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT

DERRIDA‘S MACHINES 6

PolyLogics*

Towards A Formalization of Aspects of
Polycontextural Logics

*Sponsored, partly, by the German Software ThinkTank

ALGoLL AG

, Munich, Germany.



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT

DERRIDA‘S MACHINES 7

Rhizomatics for PolyLogics

PolyLogics

 are a special thematization and formalization of the general idea of poly-
contextural logics. There is a nice little book

"Logic with Trees"

 from Colin Howson.
PolyLogics in addition, could be called "Logics with Forrests" or

"Logics in Rhizomes"

to connect to the tradition of tree-based methods.

General Strategies

Polycontextural complexions are composed by components, contextures. Complex-
ions are compounds of components. Compounds can be de-composed into compo-
nents. Compositions are

super-additive

 in respect to their components.
In contrast to logocentric systems polycontexturality is involving complexity at the

very beginning, not as a static decision but as a dynamic exchange between its fun-
damental architectonics and its metamorphic futures.

Metaphors and Motivations

PolyLogics are not based on propositions and their simple alphabet (atomicity, lin-
earity), reducible to a one sign and a nil sign alphabet, based linguistically on speech
but on written forms, hieroglyphic, like Chinese writing with its tabularity, sign-complex-
ity, contextuality, interpretability and dynamic multitude from the very beginning.

PolyLogics, in this picture, are the logics of Chinese writing. Dialectics.

How many characters?

The Chinese writing system an open-ended one, meaning that there is no upper limit to the
number of characters. The largest Chinese dictionaries include about 56,000 characters,
but most of them are archaic, obscure or rare variant forms.

Strokes

Chinese characters are written with the following twelve basic strokes:
Basic strokes which are combined to make up all Chinese characters.

The strokes themselves are not characters, thus, they don’t have a meaning. They are
the conditions of the possibility of meaning at all. In polycontextural terms they are not
signs but kenograms inscribing morphograms which can be thematized, interpreted,
transformed into logical meanings. First are the written characters, then the phonetic
interpretations. But this alone wouldn’t reflect the chiasm between writing and speech
properly. The written characters can contain some phonetic elements; and the meaning
of the written forms has to be negotiated.

http://www.omniglot.com/writing/chinese.htm
http://home.vicnet.net.au/~ozideas/writchin.htm
http://cjvlang.com/Writing/writsys/writlinks.html

The Textual Dance: Allusion in the Oldest and Newest Poetry

 A single Sumerian sign may have five, ten, twenty or more values. But the traditional and
historical method of reading those signs ignores that multi-valent quality and instead of plas-
ticizing and expanding meaning, traditional translation hardens meaning. Traditional read-
ings do this by building a transliteration, a version of the text in which specific and singular
meanings are assigned to each of the signs, establishing a single definitive or "Ur" text.
http://resonantconcept.typepad.com/experimental/2003/11/the_textual_dan.html

PolyLogics are fundamentally non-fundamentalist. There is no Ur-origin, only multi-
tudes of beginnings and ends.

http://www.omniglot.com/writing/chinese.htm
http://home.vicnet.net.au/~ozideas/writchin.htm
http://cjvlang.com/Writing/writsys/writlinks.html
http://resonantconcept.typepad.com/experimental/2003/11/the_textual_dan.html

 g g p g



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT

DERRIDA‘S MACHINES 8

1 Problems with logic and the logics of problem soving

1.1 A motivational scenario

Why not simply asking the experts from the MIT?

The Panalogy Principle:

If you 'understand' something in only one way then you scarcely
understand it at all—because when something goes wrong, you'll have no place to go. But
if you represent something in several ways, then when one of them fails you can switch to
another. That way, you can turn things around in your mind to see them from different points
of view —until you find one that works well for you now. And that's one of the things that
‘thinking” means!

We cannot expect much resourcefulness from a program that uses one single technique—
because if that program works in only one way, then it will get stuck when that method fails.
However, a program with multiple ‘ways to think’ could behave more like a person does:
whenever you get frustrated enough, then you can switch to a different approach—perhaps
through a change in emotional state.

Marvin Minsky

Implementing Panalogy

I will use the term Panalogy to refer to a family of techniques for synchronizing and sharing
information between different ways of thinking concerned with the same or similar prob-
lems. The term derives from ‘parallel analogy’. By maintaining panalogies between ways
of thinking, we can rapidly switch from one way of thinking to another.
We can also make more partial changes like the representation language they are using,
the types of assumptions they are making, the methods that are available to them for solu-
tion, and so forth. The key idea is to support representing multiple problem solving contexts
simultaneously and the links between them. A graphical depiction of panalogy at work is
shown below.

But is this exactly what I am looking for? Obviously not. To have the same wording
and to have the same diagram doesn’t yet mean that we are thematizing the same sit-
uation in the same way of thinking and implementation.

The main difference between panalogy and PolyLogics is this. Panalogy is mono-con-
textural, always only one method is running, not several at once and there is no inter-
activity and reflectionality between successively different methods. They are applied
only one after the other. If one method doesn’t work, take another.

 g g p g



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT

DERRIDA‘S MACHINES 9

PolyLogics with its proemiality is ruling the interplay of different methods running and
cooperating together at once.

Marvin Minsky offered the Six Level Model from his forthcoming book

The Emotion Machine

as an initial proposal for such an architecture. This architecture is being developed jointly
by himself and Aaron Sloman, and is based on several key ideas:

1. Use several approaches, at once, to each problem.

2. Have many ways to recognize and respond to internal and external problems.

3. Support many different “ways of thinking”.

Marvin Minsky, Push Singh, MIT, May 13, 2002

The wording

“Switching between parallel methods of thinking”

 sounds quite promis-
ing, but it doesn’t gives us a hint

how

 the switch is working, what is the mechanism of
the switch, and, how do we know that we are dealing with the same problem after the
switch to another domain. How much is the problem itself transformed by the switch of
context? And what is the notion of sameness involved in this switch? What do we mean
by "parallel" in this context?

I will use the term Panalogy to refer to a family of techniques for synchronizing and sharing
information between different ways of thinking concerned with the same or similar prob-
lems.

The common term between the different domains of panalogy is obviously

informa-
tion

. But how can we know that all the domains are ruled by the very same concept of
information? Why is the term information not in itself panalogical?

By maintaining panalogies between ways of thinking, we can rapidly switch from one way
of thinking to another.

This sounds really good! But, again,

how

 does it work and who is operating these
deliberating switches?

Minsky´s question is “

What

 could cause the change?” and not “

How

 does it hap-
pen?” or "What is the

mechanism

 of change?"

The key idea is to support representing multiple problem solving contexts simultaneously and
the links between them.

Different thematization, different strategies

The complementary aspect of Minsky´s approach to the polycontextural approach is
expressed by the statement

“We'll try to

design

 (as opposed to

define

) machines that can do all those 'different
things'."

Minsky

The question of definition is a logical one, the process of design belongs to the do-
mains of modeling, simulation, implementation and not to formalization.

It seems not to be easy to escape the challenge of logics. All the tools and methods
of design, programming languages, LISP obviously too, are based on logic. The same
is the case for the machines.

Why should the process of design be restricted by the structure of its classical tools?

http://web.media.mit.edu/~push/Push.Phd.Proposal.pdf
http://www.thinkartlab.com/pkl/media/DERRIDA/Panalogy.html

http://web.media.mit.edu/~push/Push.Phd.Proposal.pdf
http://www.thinkartlab.com/pkl/media/DERRIDA/Panalogy.html

 g g p g



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT

DERRIDA‘S MACHINES 10

Peter Wegner on logics

Because of my focus on foundational studies my realization of the category of expla-
nation is worked out in a more philosophical sense, and the category of implementa-
tion too, is more foundational than empirical, that is, it is implementing new formalisms
and programming languages with the help of today´s monolitical methods (existing
programming languages) on monolitical machines.

"I first presented the idea that Turing machines cannot model interaction at the 1992 closing
conference of the Japanese 5th generation computing project, showing that the project´s
failure to reduce computation to logic was due not to lack of cleverness on the part of logic
programming researchers, but to theoretical impossibility of such a reduction. The key argu-
ment is the inherent trade-off between logical completeness and commitment. Commitment
choice to a course of action is inherently incomplete because commitment cuts off branches
of the proof tree that might contain the solution, and commitment is therefore incompatible
with complete exploration.” Wegner, ECOOP ´99, p.1/2
http://www.cs.brown.edu/people/pw/

As mentioned above, Wegners strategy to surpass this limiting situation is not to de-
liberate the paradigm of formality which is defining the very concept of logic and all
the concrete logical systems, but some form of regression to empiricism.

“Logic can in principle be extended to interaction by allowing nonlogical symbols to be in-
teractively modified (reinterpreted) during the process of inference, for example by updating
a database of facts during the execution of logic programs. However, interactive discovery
of facts negates the monotonic property that true facts always remains true.”

Wegner, p. 25

This strategy of extending logical systems by non-logical symbols for modeling inter-
action introduces into logic some non-logical elements of empiricism. For practical rea-
sons this approach has its merits. Nevertheless, from a structural point of view of
operativity and formality nothing has changed. Still the old logic is ruling the situation
and dictating the possibilities of design.

http://www.cse.uconn.edu/~dqg/papers/#interaction

The polycontextural approach

Thus, we can distinguish 3 levels of reflection or even 3 different paradigm to com-
putation and logic:

1. The

classic

 paradigm of logic, arithmetics, computation, etc.
2. The

interactive

 paradigm (Peter Wegner, Marvin Minsky, Rolf Pfeifer, et al). With
themes of interaction, morphologic computation based on a new interpretation of com-
puting reality in modeling and design, accepting the first paradigm of formality, but
correcting it with new more realistic models based in empirical approaches. This par-
adigm is more heterogeneous and interactive than the first but doesn’t have any for-
malism to mediate the interacting heterarchic parts of the complex system in an
operativ way. This approach is still descriptive and not operative.

3. The

polycontextural

 paradigm which accepts both previous paradigms in their
context, but is trying to surpass the very limits of operativity and formality posed by the
first paradigm. Polycontexturality tries to keep the level of operativity of the classic par-
adigm but concerns with needs of a operative theory of mediation of interacting and
reflecting parts which has no place in the 2 previous paradigms.

Short: Simultaneity on a strict logico-mathematical level. Paradox approach to the
idea of an extension of logics: there is no extension of logic, in principle, but a dissem-
ination of the very same logic and its logical systems over a grid of contextural loci.

http://www.ifi.unizh.ch/ailab/people/iida/research/pfeifer_iida_JSM05.pdf
http://www.ifi.unizh.ch/ailab/people/llicht/morphcomp/slides/MorphologicalComputa-
tion.htm

http://www.cs.brown.edu/people/pw/
http://www.cse.uconn.edu/~dqg/papers/#interaction
http://www.ifi.unizh.ch/ailab/people/iida/research/pfeifer_iida_JSM05.pdf
http://www.ifi.unizh.ch/ailab/people/llicht/morphcomp/slides/MorphologicalComputa-tion

 p yp



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT

DERRIDA‘S MACHINES 11

2 From Propositions to Glyphs

"The idea of

naming

 something is a process of

abstraction

."

O-LUDICS.pdf, Jean-Yves Girard, 2000

Time is changing quickly, now, we are in 2005, and it seems that category theory
has lost its leading function to

polymathematics

 with its m-categories.

"I shall take heart from this dream and extend here a scheme I outlined in Chapter 10 of
my book, an amalgamation of a scheme of Sir Michael Atiyah with one of Baez and Dolan,
which derives in part from another giant of the twentieth century, Alexandre Grothendieck:

19th century

 The study of functions of one (complex) variable
 The codification of 0-category theory (set theory).

20th century

 The study of functions of many variables
 The codification of 1-category theory

21st century

 Infinite-dimensional mathematics
 The codification of n-category theory,
 and infinite dimensional-category theory." David Corfield
http://www-users.york.ac.uk/~dc23/phorem.htm

To connect motivations and metaphors for an introduction of PolyLogics to the 21st
century additional to grammatological speculations about Chinese writing, the event
of a revolution in category theory could play a significant role. It will still be an analogy
and its interpretation full of risks but easier to handle. The nice symmetry between log-
ic, computation and 1-category theory is in a process of displacement by the new
movement of n-category theory, challenges of interactivity in computing (Peter Wegner)
and approaches in polycontexturality to transform logic; and more.

The Tale of n-Categories:

 http://math.ucr.edu/home/baez/week78.html#tale

n-Categories: Foundations and Applications:

 http://www.ima.umn.edu/categories/

http://www-users.york.ac.uk/~dc23/phorem.htm
http://math.ucr.edu/home/baez/week78.html#tale
http://www.ima.umn.edu/categories/

 p yp



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT DERRIDA‘S MACHINES 12

Even if not well studied, we know well that 1-categories are based on triadic con-
cepts. We know well dyadic concepts and their logics. But we still try to understand
triadic concepts (semiotics, categories) in the framework of dyadics. Maybe of com-
bined dyadics. But do we have an idea about n-categories? Are they iterations, even
indefinite iterations ("infinite dimensionality") of triadic concepts of 1-category, still
based on dyadic logics? Is the term "infinite" not understood as a dyadic and not as
a genuine n-category theoretical term? What is the difference in the meaning of the
notion "indefinite" in the 3 different conceptualisations; the dyadic, the triadic 1-cate-
gorial and the magic n-categorial?

Is the notion of the infinite chain of 1-categorial concepts constituting n-categories
itself a 1-categorial concept?

PolyLogics are both: combinations of dyadic logics and genuinely m-categorial. Be-
cause mediation (combination) in PolyLogics is super-additive, decomposition into sin-
gle dyadic systems is not working without reduction, that is, denying the interactional
and reflectional parts of the whole. PolyLogics are based on morphograms. Morpho-
grammatics: The calculus of kenomic loci.

Thus, category theory is philosophically relevant in many ways and which will undoubtedly
have to be taken into account in the years to come.
Introduction to CT: http://plato.stanford.edu/entries/category-theory/
Manifesto for CT: http://www-cse.ucsd.edu/users/goguen/pps/manif.ps
CT and Computer Science: http://www.cwru.edu/artsci/math/wells/pub/ctcs.html

Locus Solum
Only locations matters. Jean-Yves Girard

What’s about the location of different n-categorial systems, where are they placed,
do they occupy a locus? And what’s the calculus of these loci? Locations in the sense
of Girard are intra-contextural loci of a system, they are not thematizing the genuine
locus of the system itself. Does n-category theory reflect any loci?

Logic and category theory

Classic category theory is well founded in classic logic. On the other hand, logical
systems can well be modeled in category theory.

William S. Hatcher: http://www.rbjones.com/rbjpub/philos/bibliog/hatch82.htm

Now, n-category theory claims to be a kind of a revolution transforming the old con-
cepts of 1-category to new concepts of n-categories. My question remains, what are
the logics of n-category theory? The plural of logics means the different roles logic can
play in the construction of n-categories. What is the use of logic in developing n-cate-
gories, what is the deduction system for n-categories and what is the foundational role
of logic for the new category theory?

Ultimative presentation: Tom Leinster: http://www.maths.gla.ac.uk/~tl/#book

1-category n-category
extension

 logic ???

foundation

 (PolyLogics)

http://plato.stanford.edu/entries/category-theory/
http://www-cse.ucsd.edu/users/goguen/pps/manif.ps
http://www.cwru.edu/artsci/math/wells/pub/ctcs.html
http://www.rbjones.com/rbjpub/philos/bibliog/hatch82.htm
http://www.maths.gla.ac.uk/~tl/#book

2.1 Abstracting propositions

"Abstraktion schwächt, Reflexion stärkt". Novalis

2.1.1 Abstracting sentences as propositions
Writing in the phono-logocentric conception of rationality is a secondary event.

It is the inscription of thoughts and spoken language into a linear scripture based
on atomic elements. The process of abstracting propositions is modeled along the
concept of naming, giving something a name, producing the whole machinery of
identity. Abstractionn as giving something a name is emphazing the act of classi-
fication in contrast to creation.

Abstraction

Out of the dynamic complexity of language sentences are abstracted which are
decontextualized enough to play the role of propositions1. Logical propositions
are propositions which can be true or false independent of all kind of modalities
and parameters. That is, independent of who, where, how, when, why, etc. a prop-
osition is stated. Propositions are formal statements which can be true or false.

Formalization

Formalization is connecting the abstract concept of propositions with operation-
al methods, mainly mathematical, like geometric, algebraic, functional, categoric
etc. to develop formal logics, which is also called symbolic or mathematical (prop-
ositional) logic. In other words, formalization is producing what we know today
as logic and logical systems, universal logic and combined logics.

Codification

Intensional logics are based on propositional logic. But enriched, step by step,
by what had to be excluded from language to develop abstract propositional log-
ic. That is, all sorts of intensional operators recognized by linguists are transformed
from their vagueness in ordinary language via mathematical linguistics to mathe-
matization, that is concretization, in intensional logics.

Concretization

Concretizations happens by parametrization of aspects of formal logics and by
adopting further formal features of natural language, like temporal, modal, spa-
cial, etc. aspects leading to modal logics, temporal logics, multi-valued logics, etc.

Formal semantics, operational hermeneutics, common sense logics, etc. are oth-
er labels for intensional logics.

1. Usually I don’t give references for obvious things. But there seems to be some de-
mand to justify my thoughts by referencing it to the well known (?) academic literature.
Thus: The procedure of "abstracting" logical propositions out of ordinary language is
developed with high accuracy by: Wilhelm Kamlah/Paul Lorenzen, Logische Propä-
deutik, Vorschule des Vernünftigen Redens, B.I. 227-227a, Mannheim, 1967, 242pp.

language proposition
abstraction

intensional logics formal logics

codification

concretisation

formalization

p yp

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 14

Again, alphabetism and signatures

To speak about alphabetism in formal systems, with its atomicity, linearity, iterability,
and ideality is not forgetting the conceptual move from alphabets as sign repertoires
to the more abstract concept of signatures of institutions introduced by Goguen. This
move is connected with the move from set to category theoretic conceptualizations.

Institutions accomplish this formalization by passing from "vocabularies" to signatures,
which are abstract objects, and from "translations among vocabularies" to abstract map-
pings between objects, called signature morphisms;

then the parameterization of sentences by signatures is given by as assignment of a set
Sen(S) of sentences to each signature S, and a translation Sen(f) from Sen(S) to Sen(S') for
each signature morphism f: S -> S', while the parameterization of models by signatures is
given by an assignment of a class Mod(S) of models for each signature S, and a translation
Mod(S') -> Mod(S) for each f: S -> S' (please note the contravariance here).

More technically, an institution consists of an abstract category Sign, the objects of which
are signatures, a functor Sen: Sign -> Set, and a contravariant functor Mod: Sign -> Setop
(more technically, we might uses classes instead of sets here).

Satisfaction is then a parameterized relation |=S between Mod(S) and Sen(S), such that the
following satisfaction condition holds, for any signature morphism f: S -> S', any S-model
M, and any S'-sentence e:

 M |=S f(e) iff f(M) |=S' e

 This condition expresses the invariance of truth under change of notation.

http://www.cs.ucsd.edu/users/goguen/projs/inst.html
Ideality: Abstractness of the change of notation

Signatures are even better realizing alphabetism than sign repertoires because they
are empathizing the abstractness of alphabetical signs, that is, the ideality of signs,
and sugn systems, in contrast to concrete occurrence of signs, independent of the con-
tent of the sign repertoire, i.e., the concrete notational material. That is, sign systems
are not only characterized by atomicity, linearity, iterability, but also by ideality. Ideal-
ity is the medium of realization of signs. Sign systems are not concrete systems but ideal
systems. Notational systems of sign systems are, to some degree, the concrete realiza-
tions, that is, the representations of abstract sign systems. And signatures as they are
defined in the theory of institutions are the themes of thematizations.

 Goguen’s "This condition expresses the invariance of truth under change of nota-
tion."

and Makowski’s „Computing does not deal with the creation of notational systems.“
 Makowsky, in: Herken, p. 457,
was quite motivational for my studies in "Strukturationen der Interaktivität" (SKIZZE).

More about semiotic, grammmatological and graphematic reflexions in/of formal
languagues (systems, logics, computation) can be found in my German texts:

http://www.thinkartlab/.com/pkl/media/SKIZZE-0.9.5-Prop.pdf
http://www.thinkartlab.com/pkl/media/DISSEM-final.pdf

http://www.cs.ucsd.edu/users/goguen/projs/inst.html
http://www.thinkartlab/.com/pkl/media/SKIZZE-0.9.5-Prop.pdf
http://www.thinkartlab.com/pkl/media/DISSEM-final.pdf

p yp

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 15

2.2 Generating contextures out of scriptures
Thematization is not only classification, like abstraction, but creation and evocation

of new horizons of thinking.

Thematization

An abstraction is delivering an abstract proposition excluding its context of abstrac-
tion. Thematizations are "abstractions" of the difference "proposition/context" deliver-
ing propositions as propositions of a context, that is, a contexture. As a consequence
of this as-abstraction there are always a plurality of contextures involved. Therefore, a
proposition as belonging to one contexture is conceptually different to a proposition
as belonging to another contexture.

Mediation

Contextures and their propositions are not isolated but mediated to complexions of
contextures and propositions. The mechanisms of such textual mediations have to be
analyzed and to be formalized towards a realization of polycontextural logics, espe-
cially to PolyLogics.

Codification

General patterns of writing have to be thematized. Not along the lines of phono-log-
ical linguistics but specific to the practice of writing. Such grammatological and
graphematic rules are delivering the basis for operational realizations.

Realization

A realization of graphematics is a further abstraction froom the rules of polycontex-
tural logics connected with the insights into the rules of scriptural codifications. Poly-
contexturality and graphematics are the two new domains of scriptural research.

scriptures contextures
thematization

graphematics polylogics

codification

realization

mediation

p yp

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 16

2.3 Sentence vs. textures
The name giving process is identifying its object and installing the laws of identity,

thus these name givers are also called "identifiers". Like the lambda abstraction, which
is defined or introduced intra-contexturally, the new samba abstraction is a trans-con-
textural operation. To distinguish it from the lambda abstraction, it should be called
samba thematization.

Philosophically, to give a name is a special linguistic operation of the general mode
of thematizing. Thematizing is more textual, to give a name is propositional or senten-
tional. It is connected with the concept of a sentence as a statement. The philosophy of
the lambda calculus is even stressing this further to the point, that the definition of a
sentence is build by naming. To give a name is fundamental for the lambda calculus
and radicalized, brought to the point by A++.

Hermeneutics and in radicalizing it, deconstructivism, tried to surpass this restriction
and to focus more on texts, intertextuality, interpretability, iterability and ambiguity in
contrast to well-formed single isolated sentences and propositions. In this sense poly-
A++ can be considered as a further extension of the lambda calculus not from the in-
side but by distribution of the very idea and apparatus of the lambda calculus over
different loci, empty places. Surely not in changing at all anything of the lambda cal-
culus itself, but in disseminating it over the loci of the graphematic matrix.

Every programming language must somehow provide a `name giving' mechanism.
Thus, every polycontextural programming language-system must somehow provide a
general ’thematizing’ mechanism as a general feature allowing disseminated ’name
giving’ mechanisms which each of them allows to call procedures or functions and
have the possibility to refer to variables inside the ’name giving’ systems and between
different ’name giving’ systems.

A ’name giving’ procedure is also an identifier. To be able to identify something it
has to be separated from its environment, but something can be separated from others
only if it can be identified. We don’t want to go into this paradoxical situation which
is nevertheless the beginning of all formalism at all. But it should be mentioned that to
identify something is including also a semiotic-ontological principle of identity: the
named has not to be changed in the process of its naming. To name is to identify and
not to change. But this is true only for the very special class of identical beings. It
doesn’t apply for living systems and even quantum physics is running in some troubles
with this identity principle.

Said all that, it seems to be obvious, that the "references" of ConTeXtures are not
symbols, variables and the data like for the intra-contextural ARS systems but the pro-
cesses of interaction and reflection between ARS systems itself as it is realized in the
texturality/textuality of texts, that is contextures. In this sense, ConTeXtures are abstract-
ing from the process of abstraction as it is realized in the Lambda Calculus. The refer-
ence is the processuality of the abstraction and not its topics.

Abstraction, again:
"The idea of naming something is a process of abstraction.
When we calculate 2+1, 3+1, 5+1, 16+1 we detect a pattern and feel that it might be
useful to calculate x+1 for any x – or at any rate for a numeral x. This concept is of course
central to mathematics and to computing where it is of the essence that we should try to de-
velop programs not just to do one job but to be as general as possible. The replacing of a
whole class of objects by a name representative of an element of the class is roughly what
we mean by abstraction and it allows us to approach functions naturally."
A J T Davie, An Introduction to Functional Programming Systems using HASKELL, pp. 79/80

To name a function by name, that is to name a name, as it happens in the defi-
nition for recursive function, can be done in two ways: intra-contextural, using the
circularity of the Y-operator or distributed over different contextures, that is trans-
contextural.

2.4 Signs vs. Patterns
ConTeXtures is not based on statements, but on intertextu(r)ality. It is not starting

with signs but with complex graphemes. ConTextures, thus, are not primarily guid-
ed by philosophical concept of logos but by graphein. The logos, and all its secu-
lar derivations, like the lambda calculus statements, have to be listened. You have
to listen the command sentences. ConTeXtures have to be read. Their elements are
not semiotic atoms but scriptural patterns which have to be described and deci-
phered. Signs are based on atomic unities, patterns are complex, antagonistic, dy-
namic events. If there is a cultural change involved with ConTeXtures then it is the
transition from the Greek alphabetism to the Chinese emblematics. ConTeXtures
are not belonging to a new logical paradigm but to the grammatological subver-
sion of Graphematics.

The polycontextural matrix can not be read like a sentence and to be listened to
its meaning. The matrix has to be read, involving different viewpoints and memory.
It can not be memorized internally as a subjective truth. There is no truth in Con-
TeXtures, but a multitude of truths space-ing multiple ways of practice. The play of
differences has to be written in a mundane game of traces and marks. The poly-
contextural matrix is a first step/jump to Graphematics transforming idealistic logic
to materialistic dialectics.

A further step is introduced with the "abstraction" (subversion) of morphizing
contextures. This is realized by Morphogrammatics and Kenogrammatics, the
grammar of kenos, the game of emptiness, studying the invariance of dynamic
scriptural patterns.

2.5 Contextures vs. Names
The textuality of ConTeXtures is involving the game of the as-abstraction based

on the proemial relation. Therefore there are no new stable beginnings of the cal-
culus. ConTeXtures are not simply changing from a name dominated to a text dom-
inated paradigm of disseminated contextures. In the same sense as names can
become contextures, e.g. in a process of de-nominalization, contextures can be
nominalized and can become names. We can call contextures by name. Contex-
tures can be named and names can be contexturalized. This is not a return home
to the name dominated logocentrism of the Lambda Calculus but part of the game
of proemial metamorphosis.

There is no fixed hierarchy for the operators samba and lambda. It is allowed to
use these operators in a "circular" and "parallel" way which also shows, that there
is no ultimate beginning and origin of the game: (...(lambda(samba(lamb-
da))...).This too, may give a hint to understand that ConTeXtures are combining al-
gebraic and co-algebraic concepts and methods of formalizing.

ARS allows a very general use of the lambda abstraction. Everything named can
be called everywhere and every time by name. It seems, that the conceptualization
of ARS is more "self-referential" than other Lambda-based programming approach-
es. In general, ARS could even call itself by name. But this makes not much sense,
because there is no conceptual space to use this way of naming and to put its
named object (ARS) somewhere. In a polycontextural environment things are very
different and it is not only possible but also necessary to call a whole system, like
ARS, by name and to use it in other contextures.

p

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 18

3 More Metaphorics

3.1 Tree farming of colored logics
To put all these more philosophical descriptions and ideas together in a more strict

formal terminology and operative apparatus we connect these ideas of colored logics
with the metaphor of the tree. In classical logic trees figure as metaphor and as math-
ematical concepts on a very basic level. We postulated that every colored logic is lo-
cally classical, e.g. each colored logic has the structure of a classic tree logic in its
syntax, semantics and proof theory. It is helpful to represent the structure of the body
or the tectonics of a logical system by its conceptual graph.
3.1.1 Notation of an institution

 Diagramm 1 Conceptual Graph of an Institution

„The arrows in this diagram represents conceptual dependencies. The notation
model ––> signature
for example, means that:
the concept of model varies as signature varies.
In particular, it means that the concept of model, the one that we have in mind, cannot be
independent of the concept of signature and neither can a particular model be independent
of its particular signature.
In a conceptual diagram, 1 represents the absolute. The notion
institution––>1
expresses that the institution notion is absolute, for it tells us that the institution notion varies
as the absolute varies – which is not at all.“ p. 488

absolute

The absolute 1 expresses that there is only one logic as such. There are many differ-
ent logical systems but from a more philosophical and logical and not only mathemat-
ical point of view all these logical systems are isomorphic to one and only one logic.
This is a (not provable Hypo) thesis.

If we do not like this absolutism we should remember that the wording holds also in
the more relativistic case. Considering a logical system working in it and with it means
that we are working with this system and not at once or at the same time with another
one. We can speak therefore of a relative absolute of the logic under consideration.

satisfaction

model sentence

signature

institution

1

p

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 19

Even for mixed logics as in the project of Combining Logics there is a (relative) notion
of the absolute of the system.

As we will see the situation will be totally different for polycontextural logics where
a plurality of absolutes ordered in a heterarchical manner exists and the desire to have
a mega-absolute for the whole complex system would turn out to be (simply) a new ab-
solute within a plurality of other neighbored absolutes.

From the point of view of PCL the absolute means that the whole system is defined
under the operation of identity ID. The system viewed as an object and as a morphism
coincide.

 Diagramm 2 Monoforme Mediation of two Institutions

satisfaction

model sentence

signature

institution

1

satisfaction

model sentence

signature

satisfaction

model sentence

signature

institution

satisfaction

model sentence

signature

institution

1 121

p

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 20

3.2 Preliminary Comments
3.2.1 Syntax

For each tree of the colored logical systems the ancestral property of its formulae
holds. In each tree there is a immediate predecessor relation which decompose the for-
mula in its subformulas. All that is ruled by the principle of induction over the formulas
for each logical system. The induction principle is distributed over all logical systems.

Additionally to the concept of a predecessor for each system we have to introduce
in the trans-classical context the operation or relation of the immediate neighbor. These
makes possible some kind of permutation of logical systems over the range of the com-
plex of distributed systems.

Further on we have to introduce the very special concept of the immediate bifurca-
tion of a formula of a logical system into subformulas distributed over other logical sys-
tems and one part of the formula remains in its original system
3.2.2 Unification

On a meta-logical level, total functions are supporting symmetrical classifications
and categorisations of logical particles.

This nice property of a logical symmetry is lost in trans-classical logics because of
their transjunctions which are composed of partial functions. But with the help of the
concept of partial functions we can introduce a new idea of a slightly more complex
symmetry composed by partiality. The classical case of symmetry is then introduced as
a regular composition of partial functions. This idea of a complex symmetry composed
of asymmetrical functions needs additionally to the classical operator of conjugation a
new operator of composition of partial functions.
3.2.3 Semantics

Truth-values in classical systems are connotated with the formal logical explication of
truth and false. Formal truth and formal false do not involve ontological questions about
truth and falsehood of sentence. This belongs to the level of examples for formal logical
sentences.

In PCL systems truth values, if we are choosing a truth value semantics, have to real-
ize two jobs, the first is more or less the same as in classical systems, they represent
the formal logical concept of true and false of propositions of their logic. The second
job is very different, they have to mark in which logical system the difference of true/
false holds. Therefore they have an index of the system they belong or origin: {Ti, Fi}.
As the splitting function of transjunction shows these truth values can occur in different
systems at once. As a result, the whole semantics of propositions, sentences, phrases
and truth-values has to be deconstructed.

As explained metaphorically earlier these logics are not isolated from each other but
combined to a complex logical, or ultra-logical, system. Otherwise they would behave
totally in parallel and it would be at least at first only an application of one classical
logic at different epistemological places without any interaction or mediation.

A first, quite natural and elementary, connection is given by a (special) linear order-
ing of the systems and their truth-values.

To not to confuse this kind of order with other ordering systems I call it a chiastic lin-
ear order of truth-values. A chiasm is defined as a tupel of order, exchange, coinci-
dence and positioning relations.

Therefore the semantics of PCL is not defined over a set of truth-values but over an
order, a chiastically ordered structure of truth-values.

The difference becomes obvious for the semantics of ternary and general n-ary log-
ical functions or logical compositions. This difference between set based and order

based semantics is hidden for the typical binary case.
As a natural consequence the notions of sentence, model and satisfaction have

to be distributed over the indices of their semantics.
3.2.4 Consequence relations and proof theory

For each single logical system of the PCL complexion there exist a consequence
relation and a proof theory for this logic. The consequence relation for the whole
system of logic is composed of the distributed single consequence relations of each
logic.

We will choose the analytical tableaux method as our proof procedure.

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 22

Proemiality of PolyLogics

4 Architectonics

4.1 Proemial relationship of mediated systems
The architectonics of a polycontextural systems defines the kind and complexity of

distribution and mediation of the contextures involved, short, the complexity of dissem-
ination.

For introductory reasons the order of mediation of basic contextures will be restricted
to linearity in excluding other combinatorial patterns like stars, etc. as architectonic ba-
sic structures. That doesn’t mean, that polycontexturality is subsumed under the general
logocentric principle of linearity. Simply because this logocentric principle of linearity
is an intra-contextural and not a trans-contextural principle governing the polycontex-
turality of a multitude of contextures, all inhibited locally by a classical principle of lin-
earity.

The modus of mediation will be realized by the proemial relation, its structure is often
called chiasm. This too, is supporting tabularity and distribution of different principles
of linearity, in contrast to classic linearity, even for the case of "linearily" mediated sys-
tems.

On this level the presentation and notation of architectonics and proemiality is re-
stricted to conceptual graphs.

 Diagramm 3 Basic proemial relationship

Terminology

The cascading order of the two order relation, mediated by the exchange and coin-
cidence relations, an elementary case of "linearily" ordered mediation of subystems
represented by order relations. Not included in the diagram is the additional sub-sys-
tem at position3, produced super-additively by the difference of position1 and 2.

 Diagramm 4 Basic proemial relation table

order relation

order relation

exchange relation

coincidence
 relation

position1

position2

coinc (x y) exch (x y) ord (x y)

x1 coinc x2 x1 exch y2 x1 ord y1
y1 coinc y2 y1 exch x2 x2 ord y2

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 23

The mediator is defined by the proemial relationship of (coinc, exch, ord, pos).
The operator "coinc" is representing the binary relation of coincidence, in the sense

of the sameness, categorial analogy, of two operands or two operators.
The operator "ord" is representing the binary relation of order, in the sense of the

asymmetry of an ordered pair of operator, operand and uniqueness.
The operator "exch" is representing the binary relation of symmetrical exchange, in

the sense of a symmetric difference between operator and operand.
The object 1 is the initial object defining the relative uniqueness of the relationship.

relator

relatum

relation

1

relator

relatum

relation

1

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 24

4.1.1 Objectionality of mediated proemial Objects
Atomic objects are not simple and identical in ConTeXtures but complexions of

"parts", "aspects" belonging to different contextures. Contextures are mediated by the
proemial relationship. Additional to this proemial or chiastic pattern we introduce a
special kind of mediating systems, realizing the super-additivity of mediated or com-
bined systems. I call their relationality towards the other systems "siml" for similarity.

samba (samba, 3, (ord, coinc, exch, siml, opp), (x, y))

 Diagramm 5 Diagram of mediated proemiality of objects

 Diagramm 6 Relational table of mediated proemial object

 Diagramm 7 Symmetric mediation table of mediated proemial object

c-ob(3) x1 y1 x2 y2 x3 y3

x1 id ord coinc exch siml exch

y1 ord id exch coinc opp siml

x2 coinc exch id ord siml opp

y2 exch coinc ord id opp siml

x3 siml opp siml opp id ord

y3 exch coinc opp siml ord id

x1 x1

x2 x2

 x3 x3

 Obj(3) : Obj (3) ––> Obj(3)
X

X

X

X

()

.

.

.

3

1 3

1 2

2 3

()

















coinc (x y) exch (x y) siml (x y) ord (x y) opp (x y)

x1 coinc x2 x1 exch y2 x1 siml x3 x1 ord y1 x2 opp y3
y1 coinc y2 y1 exch x2 y2 siml y3 x2 ord y2 x3 opp y2
y1 coinc y3 x1 exch y3 x3 ord y3 x3 opp y1

x2 coinc x3

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 25

 Proemial object

x(3) == (x1 coinc x2 coinc x3 , x1 siml x3)

y(3) == (y1 coinc y2 coinc y3 , y1 siml y3)
x(3) exch y(3) ;; x(3) ord y(3)

An atomic 3-contextural object is therefore introduced as a mapping in itself which
makes sense only if the object is not an atomic object ob (formal object, Curry) but a
complex c-ob(m) (proemial object). Obviously, an atomic object ob is a reduction of a
c-ob to its mono-contextural status.

In formal systems atomic terms are distinguished from composed terms. Composed
terms are linear compositions of concatenations. Polycontextural c-obs are complex,
not in the linear but in the tabular sense. Tabular complex terms are composed not by
concatenation but by mediation.

4.1.2 Super-additivity of mediated systems

Super-additivity, as well as super-subtractivity, appears naturally on all levels of poly-
contextural systems and is "based" in the super-additivity of the proemial relationship.
Proem (A) + Proem (B) < Proem (A + B)

 Obj(5) : Obj (5) ––> Obj(5)

x1 y1

x2

y4

y2

x4

x3

y3x5

y5

x6

y6

x7y7

x8

y8

x9

y9

x10

y10

super-additive systems mediated systems

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 26

4.1.3 Numbering of sub-systems

 Diagramm 8 Enumeration of sub-systems

Directly mediated systems like S1, S2, S4,
S7 are mediated by indirect mediated su-
per-additive systems which becomes medi-
ating systems relative to their positions.
((S1 med S2) add S3),
((S2 med S4) add S5),
((S4 med S7) add S8),
((S3 med S5) add S6),
((S5 med S8) add SS9), ((S6 med S9) add S10).

1 ––> 2 ––> 3 ––> 4 ––> 5

1 ––––––––> 3

 2 ––––––––> 4

1––––––––––––––> 4

 3 ––––––––> 5

 2 ––––––––––––––> 5

1 –––––––––––––––––––> 5

mediated systems

super-additive systems

- short version -

|

|

|

| |

S1 S2 S4 S7

 S3 S5 S8

 S6 S9

 S10

mediated

 super-

 additive

 sub-systems

p p y

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 27

5 Notational problems with complexity

5.1 Linear vs. tabular notations
For traditional and historical reasons formulas have been written in linear form. But

this comes to an end if we introduce more complex situations. The following examples
are considering only the case of balanced matrices and OiMj, i=j, that is, the diagonal
systems only.

To write down and to deal with, say a 47-contextural logic, would simply fall out of
the scope of perception. Linearity, even for the representations of the operators of a
formula, not mentioning composed formulas, has failed to work.
5.1.1 Operational patterns

A kind of a tabular numeration of the operators may help a step further in dealing
with notational complexity.

On the half way to combinatory logic operational patterns are abstracting, as far as
possible, from the variables of the formulas and inscribing only the operational pat-
terns and their transformations.

Numeration

 Diagramm 9 Enumeration of sub-systems, O-matrix

Binomial numbers onto operator patterns.

X Y

X Y

X

4 4

5 5

6

() ()

() ()

()

∨∧∨∧∨∧

∨∧∨∧∨∧∨∧∨∧

∨∧∨

� �

�

� ∧∧∨∧∨∧∨∧∧∨∧∨∧





()�

� � � :�

Y

and so on binomial
m

6

2







1 3 6 10 15 21��� � � �...

O

O

O O

O O O

OO O

num
:������� �

�

�

�

�

1 2 3 4 5

10

6 9

3 5 8

1 2

[] ⇒

44 7
O �

























p p y

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 28

5.1.2 Examples: Dualizations

 Diagramm 10 Dualization

Duality of sub-system 6 and transpositions of affected neighbor-systems
Green: not affected, red: dualized, black: transposed sub-systems.
Interpretation: sub-systems 1, 9, 10 are isolated in respect to the dualization of sub-

system 4. Thus, sub-system 4 can be logically manipulated without disturbing the basic
sub-system 1 and the mediating sub-systems 9 and 10.

The dualizations D1 and D4 are commutative: D1 (D4) = D4 (D1).

5.1.3 Dualization cycles

5.1.4 N, K and D calculus

D
4

5 6

3 5 8

2 7

10

9

1 4

()

∨

∨

∨

∧

∨ ∧ ∨

∧ ∧











 ∨

:��

�

�

�

� �













⇒
∧

∧ ∧ ∧

∧ ∨









∨

∨

∨ ∧

� �
�

�

� �

10

9

1

3

6 2 7

5 84


















Dualization cycles

D D D D

D D D

�

��
1 3 3 1

1 2 1

() = ()
()()���

��

:�

= ()()
()() = ()()

D D D

D D D D D D

DC D

2 1 2

2 3 2 3 2 3

1
11 2 1 2 1 2

1 3 1 3

1 2 1 2 1 3 1

2

3

.

. . .

.

:�

:

DC D

DC D
..2 1 2 3 1 2 3 2 1 2 1 2 3 2 1 3

K N X Y

K X N Y

D

i i

i i

i

1

2

�: � � � �

�: � � � �

�:

= ()
= ()

=��� �,� ,N K K i
i i i

1 2 1 2()() =

5.1.5 Proemiality in ConTeXtures
Despite the intricate complex-
ity of proemial objects Con-
TeXtures will be based mainly
on the basic relations of pro-
emiality, order, exchange
and for the mediated systems
siml. Without producing con-
fusion siml will also be called
the coincidence relation.

5.1.6 Comparability of proemial objects
5.1.6.1 Unary objects

x(3) = (x1, x2, x3), more explicit because it is not a tuple but a mediation and
again visualized by the diagram below.

x(3) = (x1 § x2 § x3)

Signatures of x(3)

T1,3 x
§
F1,2 x (or F1, T2 x)
§
F2,3 x (or F2,3 x)

There are 5 unary morphogrammatic objects for a 3x1-matrix with max 3 differ-
ent occupations, giving base for all possible interpretations, mapping of obs onto
it.
5.1.6.2 Binary Objects

There are 3281 morphograms for a 3x3-matrix with max 3 different occupations
(kenograms).

x1 x1

x2 x2

 x3 x3

 Obj(3) : Obj (3) ––> Obj(3)
X

X

X

X

()

.

.

.

3

1 3

1 2

2 3

()

















T1 F1

T2 F2

 F3 T3

X

X

X

X

()

.

.

.

3

1 3

1 2

2 3

()

















X

X

X

1 1

1 1

1 1

.

.

.

















T T

F T

F F

1 3

1 2

2 3

,�,��

,� ,�

,� ,� �

∅

∅

∅





















term

comparable incomparable

equal non-equal

p p y

DRAFT
1

6��.

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 32

General Framework of PolyLogics

PolyLogics

sketch logic horizon

build arc

m− −

−

()

hhitectures

interactional
reflectional
deductioonal

thematize scenar



















− iios

choose logic types

classic
intuitionistic

− −

ddialogical
multiple valued
contextual

−




















−decide prooff style

Hilbert
Smullyan
Fitch
Gentzen

−



















− −select logic topics

Booolean
class
relational
reflectional
actional�




















identtify frameworks

define operations

abstract

−

−

−

ffunction

propose statements���� −{ }






















































































































































































































































































































































































































































































































































































































































































































































sketch horizon

build architectures

themat

m−

−

()

iize scenarios

identify frameworks

define o

−

−

−

pperations

abstract function

propose sta

−

−���� ttements{ }














































































































Tableaux rules for PolyLogics

1 Tableaux rules for junctions

1.1 Pattern [id, id, id]

t X Y

t X

t Y

f X Y

f X f Y
1

1

1

1

1 1

� � � �

�

�

����
� � �

� �� �

∧ ∧ ∧ ∧ ∧ ∧

tt X Y
t X

t Y

f X Y

f X f
2

2

2

2

2 2

� � �
�

�
�

����
� � �

� �� �

∧ ∧ ∧ ∧ ∧ ∧

YY

t X Y
t X

t Y

f X Y

f

�
��

� � �

�
�

�
��

����
� � �

�
3

3

3

3

3

∧ ∧ ∧ ∧ ∧ ∧

XX f Y�� � �3

t X Y

t X t Y

f X Y
f X

f Y

1

1 1

1

1

1

� � � �

� �� �
����

� � �
�

�

∨ ∨ ∨ ∨ ∨ ∨

tt X Y

t X t Y

f X Y
f X

f

2

2 2

2

2

2

� � �

� �� � �
����

� � �
�

�

∨ ∨ ∨ ∨ ∨ ∨

YY

t X Y

t X t Y

f X Y
f

�
��

� � �

� � �� � ��
����

� � �3

3 3

3∨ ∨ ∨ ∨ ∨ ∨

33

3

�

�
�

X

f Y

PM O O O
M log
M log
M log

PM O O O1 2 3
1 1
2 2
3 3

1 2
∅ ∅

∅ ∅
∅ ∅

����

33
1
2
3

M and
M and
M and

∅ ∅
∅ ∅
∅ ∅

JJJ L L L L L L() → 





() () (): �*�� � � :� ,� ,�3 3 3
1 2 3

LLog L L L

Log L L
junct J1 1 1 1

2 2 2

: �*� �� � �

: �*�
�

 →

��� � �

: �*� ��
�

�

junct J

junct J

L

Log L L

 →

 →
2

3 3 3










 �L

3

j

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 34

1.2 Pattern [id, id, red]

t X Y

t X t Y

f X Y
f X

f Y

1

1 1

1

1

1

� � � �

� �� �
����

� � �
�

�

∨ ∧ ∨ ∨ ∧ ∨

tt X Y

t X

t Y

f X Y

f X f Y
2

2

2

2

2 2

� � �

�

�

����
� � �

� �� �

∨ ∧ ∨ ∨ ∧ ∨

��
��

� � �

� � �� � ��
����

� � �t X Y

t X t Y

f X Y
f

3

3 3

3

3

∨ ∧ ∨ ∨ ∧ ∨
��

�
�

X

f Y3

t X Y

t X

t Y

f X Y

f X f Y
1

1

1

1

1 1

� � � �

�

�

����
� � �

� �� �

∧ ∨ ∧ ∧ ∨ ∧

tt X Y

t X t Y

f X Y
f X

f

2

2 2

2

2

2

� � �

� �� � �
����

� � �
�

�

∧ ∨ ∧ ∧ ∨ ∧

YY

t X Y
t X

t Y

f X Y

f

�
��

� � �

�
�

�
��

����
� � �

�
3

3

3

3

3

∧ ∨ ∧ ∧ ∨ ∧

XX f Y�� � �3

t X Y

f X f Y f X f Y

f X1

1 1 3 3

1� � � �

� � � �� � � �
����

� �∨→ ∨ ∨→ ∨��
�

�
��

�

�

� � �

� �� � �
�

Y
f X

f Y

f X

f Y

t X Y

f X t Y

1

1

3

3

2

2 2

∨→ ∨
����

� � �
�

�
�

f X Y
t X

f Y

2

2

2

∨→ ∨

PM O O O
M log
M log
M log

PM O O O1 2 3
1 1
2 2
3 3

1 2
∅ ∅

∅ ∅
∅ ∅

����

33
1
2
3

M or
M impl
M or

∅ ∅
∅ ∅

∅ ∅

∨→ ∨()  → ∅() () (): �*�� � � :�(|),� ,�L L L L L L3 3 3
1 3 2







 →
∨

Log L L L
disjunction1 1 1 1

: �*� �� �
�

��|� �

: �*� ��
� ���

L

Log L L
imlication

3

2 2 2 →
 →�� �

: �*� �� �
�

L

Log L L L
disjunction

2

3 3 3 1∨
 →











1.3 Pattern [id, id, red], part II

t X Y

f X t Y f X t Y

f X1

1 1 3 3

1� � � �

� � � �� � � �
����

� ��→→→ →→→→

→→→

�
�

�
��

�

�

� �� �

� � � �

Y
t X

f Y

t X

f Y

t X Y

f X t Y

1

1

3

3

3

2 2 ����
����

� �� �

�
�

�

f X Y
t X

f Y

3

2

2

→→→

t X Y

f X t Y

f X Y
t X

f

i

i i

i

i

i

� � � �

� � � �
����

� �� �
�

�

→⇒→ →⇒→

YY

i

�
��,� �,�,����= 1 2 3

t X Y

f X t Y f X t Y f X t Y
1

1 1 2 2 3 3

� � � �

� � � �� � � � �� � � � �

→⇒→
���������

� �� �

�

�
��

� �

�
�

�

f X Y

t X

f Y

t X

f Y

t
1

1

1

2

2

3

→⇒→

XX

f Y3 �

t X Y

t X f Y t X f Y

f X3

2 2 3 3

3� � �

� � � � �� � � � ��
����

� ��←←← ←←←←�
�

�
��

�

�
�

Y
f X

t Y

f X

t Y
2

2

3

3

t X Y

t X f Y

f X Y
f X

t

i

i i

i

i

i

� � � �

� � � �
����

� �� �
�

�

←⇐← ←⇐←

YY

i

�
��,� �,�,����= 1 2 3

t X Y

f X t Y f X t Y

f X1

1 1 3 3

1� � � �

� � � �� � � �
����

� ��→←→ →←→→

→←→

�
�

�
��

�

�

��

� �� �

� � �

Y
t X

f Y

t X

f Y

t X Y

t X f

1

1

3

3

3

2 2 �� ���
����

� �� �

�
�

�
Y

f X Y
f X

t Y

3

2

2

→←→

j

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 36

1.4 Pattern [id, red, red]

t X Y

f X t Y t X f Y f X t Y
1

1 1 2 2 3 3

� � � �

� � � �� � � � �� � � � �

→⇐→
���������

� �� �

�

�
��

� �

�
�

�

f X Y

t X

f Y

f X

t Y

t
1

1

1

2

2

3

→⇐→

XX

f Y3 �

PM O O O
M log
M log
M log

PM O O O1 2 3
1 1
2 2
3 3

1 2
∅ ∅
∅ ∅
∅ ∅

����

33
1
2
3

M impl
M repl
M impl

∅ ∅
∅ ∅
∅ ∅

→⇐→() →() () (): �* �� �

�������������:� ,�

L L L

L

3 3 3

1
LL L

Log L L

Log L
impl

1 1

1 1 1 1

2

,�

: � � �

:
��







 →

22 1 1

3 3 1 1

� � �

: � �
��

�

repl

impl

L

Log L L

 →

 →











g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 37

2 Tableaux rules for negations Neg(3)

2.1 Permutational patterns

t X

f X

t X

t X
1 1

3

1
3

2 1
3

3
3

� �

�
�����

� �

�

()

()

()

()

¬() ¬()
�����

� �

�

� �

�

()

()

()

()

t X

t X

f X

t X

3 1
3

2
3

1 1
3

1
3

¬()

¬()
������

� �

�
����

� �()

()

()f X

f X

f X

f
2 1

3

3
3

3 1
3

2

¬() ¬()
�� ()X 3

t X

t X

t X

f X
1 2

3

3
3

2 2
3

2
3

� �

�
�����

� �

�

()

()

()

()

¬() ¬()
�����

� �

�

� �

�

()

()

()

()

t X

t X

f X

f X

3 2
3

1
3

1 2
3

3
3

¬()

¬()
������

� �

�
����

� �()

()

()f X

t X

f X

f
2 2

3

2
3

3 2
3

1

¬() ¬()
�� ()X 3

t t t X

f t t X

f f f X
1 2 3 1

3

1 3 2
3

1 2 3 1
� �

�
�����

� �()

()

¬() ¬ (()

()

()

(

�

� �

�

3

1 3 2
3

1 2 3 2
3

3 2 1
3

()

¬()

t f f X

t t t X

t f t X))

()

()
�����

� �

�

f f f X

f t f X
1 2 3 2

3

3 2 1
3

¬()

non L L L L L

Log L
1

3 3
1 3 2

1

() → 





() (): �� � :� ,� ,�

:
11 1 1

2 2 1 3

3

� � �

: � � �

:

��neg

perm

L

Log L L

Log

 →

 →

LL L
perm3 1 2

� � →











non L L L L L

Log L pe

2
3 3

3 2 1

1 1

() → []() (): �� � :� ,� ,�

: � rrm

neg

L

Log L L

Log

2 3

2 2 2 2

3

��

����

� �

: � � �

:

 →

 →

LL Lperm3 2 1� ��� →









g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 38

2.2 Bifurcational patterns: Tableaux rules for transjunctions
Transjunctions are the primary interactional operations in polylogical systems.

 Diagramm 11 Tableaux rules for (X trans and and Y)

t X Y

t X

t Y

f X Y

f X

f Y

1

1

1

1

1

1

� � ��

�

�

����
� � �

�

�

<>∧∧ <>∧∧

tt X Y

t X

t Y

f X

f Y

f X
2

2

2

1

1

2
� � �

�
� �

�
�

�

�

����
� �<>∧∧ <>∧∧∧

<>

�

� �����
�

�
��

�

�

��

� �

Y

f X f Y
f X

t Y

t X

f Y

t X

2 2
1

1

1

1

3
∧∧∧ <>∧∧�

�
�

�
����

�

�

����
� � �Y

t X

t Y

t X

t Y

f X Y

f3

3

1

1

3

3
�� �����

�

�
��

�

�
X f Y

f X

t Y

t X

f Y3
1

1

1

1

PM O O O
M log log log
M log
M log

P1 2 3
1 1 1 1
2 2
3 3

∅ ∅
∅ ∅

����

MM O O O
M trans trans trans
M and
M and

1 2 3
1
2
3

∅ ∅
∅ ∅

<>∧∧()  →() () (): �*�� � � :� ,�(||),L L L L L L3 3 3
1 2 1

LL L

Log L L
transjunct

3 1

1 1 1

||

: �*� ��
�

()






<>
→→

→

→
� :�

�*�� �,�

�*�� �,�
L

f t f f

t f t t1
1 1 2 3

1 1 1 3








 →Log L L
conjunction2 2 2

: �*� �� �
���

LL L

Log L L
conjunction

2 1

3 3 3

�||�

: �*� ��
���

 → �� ||L L
3 1














g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 39

T1,3 : truth value true for systems 1 an3

f1: value false for system 1 (= f1)
f2: value true for system 2 (= t2)

F2,3: values false for systems 2, 3

t: transjunction
o: disjunction
a: conjunction
(this terminology (o, a, t, i, j) holds
for the ML implementation)

 Diagramm 12 Tableaux rules for (or trans or)

Matrix representation
of oto

�
��� �(� �)���������oof taa

T T T

T f

�(� �)

�������������
�� ���

���
,1 3 1 3

1 11 2 1 3

3 1 3 2 3

, ,

, ,

��

���� �

�����

�������������

T

T T F

TT F F

F f F

F F F

1 3 2 3 3

2 3 1 2 2

3 2 2

, ,

, ,

,

�� ���

��� ��

���� �
33

t X Y

t X t Y
f X

t Y

t X

f Y

1

1 1
2

2

2

2

� � ��

� ����
�

�
��

�

�

��
∨<>∨

���
� � �

�
�

�
����

�

�

� �

f X Y

f X

f Y

t X

t Y

t X

1

1

1

2

2

2

∨<>∨

∨<>∨∨ ∨<>∨

∨

�

�

�

����
� � �

�

�

��

� �

Y

t X

t Y

f X Y

f X

f Y

t X

2

2

2

2

2

3
<<>∨�

��� �����
�

�
��

�

�

����
Y

t X t Y
f X

t Y

t X

f Y

f

3 3
2

2

2

2

33

3

3

2

2

� � �

�

�
��

�

�
�

X Y

f X

f Y

f X

f Y

∨<>∨

∨<>∨()  →() () (): �*�� � � :�(||), ,�L L L L L L3 3 3
1 2 2

LL L

Log L L
disjunction

3 2

1 1 1

||

: �*� ��

()





 →

 →
<>

� ||

: �*� ��
�

L L

Log L L
transjunct

1 2

2 2 2
�� �:

�*�� �,�

�*�� �,�
L

f t t t

t f t t2
2 2 1 3

2 2 1 3

→

→








 →







Log L L L L
disjunction3 3 3 3 2

: �*� �� � ||









g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 40

For total transjunctions and junctions.
J is representing junctional operators. The compposition of (J<>J) has, as for all other

cases too, to fuliil the conditions of mediation (CM).

t X J J Y

t J
f X

t Y

t X

f Y

f
1

1
2

2

2

2

1
� � ��

����
�

�
��

�

�

����
<> �� � �

������
�

�

� � �

�

X J J Y

f J
t X

t Y

t X J J Y

t X

t

<>

<>

1
2

2

2

2

22

2

2

2

3

3

�

����
� � �

�

�

��

� � �

�

Y

f X J J Y

f X

f Y

t X J J Y

t

<>

<>

�����
�

�
��

�

�

����
� � �

�J
f X

t Y

t X

f Y

f X J J Y

f J2

2

2

2

3

3

<>

���
�

�
�

f X

f Y
2

2

t X JJ Y

t X

t Y

f X JJ Y

f X

f Y

1

1

1

1

1

1

� � ��

�

�

����
� � �

�

�

<> <>

tt X JJ Y

J
f X

f Y

f X JJ Y

J

2

2
1

1

2

2

� � �

�
�

��
�

�

����
� � �<> <>

���
�

�
��

�

�

��

� � �

� ����

f X

t Y

t X

f Y

t X JJ Y

J
t

1

1

1

1

3

3
1

<>

��

�

����
� � �

��
�

�
��

�

�

X

t Y

f X JJ Y

J
f X

t Y

t X

f
1

3

3
1

1

1

1

<>

YY

J J L L L L L L<>()  →() () (): �*�� � � :�(||), ,�3 3 3
1 2 2

LL L

Log L L L
junct J

3 2

1 1 1

||

: �*� �� �
�

()





 →
11 2

2 2 2 2

||

: �*� �� � �
�

L

Log L L L
transjunct <>

 → ::
�*�� �,�

�*�� �,�

f t t t

t f t t

Lo

2 2 1 3

2 2 1 3

→

→








gg L L L L
junct J3 3 3 3 2

: �*� �� � ||
�

 →














<>()  →() () ()JJ L L L L L: �*�� � � :� ,
��������

3 3 3
1 22 1 3 1

1 1 1

|| ,� ||

: �*� ��

L L L

Log L L
trans

() ()





jjunct
L

f t f f

t f�
� :�

�*�� �,�

�*�<>
 →

→
1

1 1 2 3

1 1
�� �,�

: �*� ��
��

→






 f f

Log L L
transjunct

2 3

2 2 2 ���

�������

� ||

: �*� ��

 → L L

Log L L
junct J

2 1

3 3 3 ��
� || →












 L L

3 1

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 41

2.2.1 A Classification of transjunctions

We can distinguish between total and partial transjunctions.

Total transjunctions can be full total transjunctions (<>) or reduced (<>’, ’<>) total
transjunctions.

Full total transjunctions can be separated into equivalential or into kontra-valential
full transjunctions.

Partial transjunction, also called conditional transjunctions, can be classified as rep-
licative (<) and implicative (>) partial transjunctions.

Implicative and replicative partial transjunctions can be devided into conjunctive and
disjunctive parts.

For systems with more than 3 contexture a new type of transjunctions and its differ-
entiations occurs: the global transjunction. In contrast to the above transjunctions, no
value is repeated in global transjunctions. Each place of the morphogram is occupied
by a different value from different systems.

This terminology is modeled, obviously, on the names of the classical junctions, other
classifications are in use, too.

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 42

2.2.2 Conditional transjunctivity

Conditional transjunction, also called implicative (>) and replicative (<) transjunc-
tions, only one part of the two alternatives is chosen.

t X J J Y

t J
t X

f Y

f X J J Y

f

1

1
2

2

1

1

� � ��

����
�

�

����
� � �

�

> >

�����
�

�
�

�
����

� � �

�

J
t X

t Y

f X

t X

t X J J Y

t X

2

2

2

2

2

2

>

�� �
�
��

��

����
� � �

�

�
�

��

t Y

f X

t Y

f X J J Y

f X

f Y

t

2

2

2

2

2

2

>

33

3
2

2

3

3

� � �

�����
�

�

����
� � �

�

X J J Y

t J
t X

f Y

f X J J Y

f

> >

JJ
f X

f Y
��

�

�
�2

2

t X J J Y

t J
t X

f Y

f X J J Y

f

1

1
2

2

1

1

� � ��

����
�

�

����
� � �

������
�

�

�������

� � �

�

� �
�

��

J
t X

t Y

t X J J Y

t X

t Y

2

2

2

2

2

���
� � �

� �
��

� � �

�����
�

f X J J Y

f X

t X J J Y

t J
t X

f

2

2

3

3
2

22

3

3 2

�

����
� � �

���� ��

Y

f X J J Y

f J f X

J J L L L L L L L>() →() () (): �*�� � � :�(||), ,� |3 3 3
1 3 2 3

||

: �*� �� � ||
�

L

Log L L L
junct J

2

1 1 1 1

()





 → LL

Log L L L
f

transjunct

2

2 2 2 2
2

�

: �*� �� � �:
�>

 →
��*�� �,�

�*�� �,�

:

t t t

t f f t

Log

2 1 3

2 2 1 2

3

→

→








LL L L L

J J

junct J3 3 3 2
�*� �� � ||

�
 →














<()) →() () (): �*�� � � :�(||), ,� ||L L L L L L L L3 3 3
1 3 2 3 2(()





 →Log L L L L

L

junct J1 1 1 1 2
: �*� �� � ||

�

oog L L L
f t

transjunct2 2 2 2
2: �*� �� � �:
�*�

�<
 → 22 1 2

2 2 1 3

3 3

� �,�

�*�� �,�

: �*

→

→








f t

t f t f

Log L �� �� � ||
�

L L L
junct J3 3 1

 →














t X J J Y

t J
f X

t Y

f X J J Y

f

1

1
2

2

1

1

� � ��

����
�

�

����
� � �

�

< <

�����
�

�
�

�

� � �

�

� �
�
�

J
t X

t Y

t X

f X

t X J J Y

t X

t Y

2

2

2

2

2

2

2

<

tt X

f Y

f X J J Y

f X

f Y

t X J

2

2

2

2

2

3

�

��

����
� � �

�

�����

� �

<

< JJ Y

t J
f X

t Y

f X J J Y

f J
f

�

�����
�

�

����
� � �

���
�

3
2

2

3

3
2

<

XX

f Y
2
�

�

�

�

�
�

�

�
����

f X

f Y

t X

f Y
f X2

2

2

2
2

















=

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 43

2.2.3 implicative and replicative transjunctivity

both wrong !!!

Systematics and semantics

t X J J Y

t J
t X

f Y

f X J J Y

f

1

1
2

2

1

1

� � ��

����
�

�

����
� � �

������
�

�

�������

� � �

�

� �
�

��

J
t X

t Y

t X J J Y

t X

t Y

2

2

2

2

2

���
� � �

�

�
�

�

�
�

��

� � �

f X J J Y

f X

f Y

f X

f Y

t X J J Y

2

2

2

2

2

3

������
�

�

����
� � �

���
�

t J
t X

f Y

f X J J Y

f J
f X

f3
2

2

3

3
2

2
��

�
�

�
��

Y

f X

f Y
2

2

t X J J Y

t J
t X

t Y

f X

t Y

f
1

1
1

1

2

2

1
� � ��

����
�

��
�

�

�

����
�XX J J Y

f J
f X

f Y

t X

f Y

t X J J Y

� �

�����
�

�
��

�

� � �

1
1

1

2

2

2

tt X

t Y

f X J J Y

f X

f Y

t X J

2

2

2

2

2

3

�

� �
�

����
� � �

�

�����

� � J Y

t J
f X

t Y

f X J J Y

f J
f

�

�����
�

�

����
� � �

���
3

2

2

3

3
2
��

�
�

X

f Y
2

J J L L L L L L L() →() () (): �*�� � � :�(||), ,� |3 3 3
1 3 2 3

||

: �*� �� � ||
�

L

Log L L L
junct J

2

1 1 1 1

()





 → LL

Log L L L
f

transjunct

2

2 2 2 2
2

�

: �*� �� � �:
�

 →
��*�� �,�

�*�� �,�

:

t f f

t f t t

Log

2 2 3

2 2 1 3

3

→

→








LL L L L

J J

junct J3 3 3 2
�*� �� � ||

�
 →














()) →() () (): �*�� � � :�(||), ,� ||L L L L L L L L3 3 3
1 3 2 3 2(()





 →Log L L L L

L

junct J1 1 1 1 2
: �*� �� � ||

�

oog L L L
f t

transjunct2 2 2 2
2: �*� �� � �:
�*�

�
 → 22 1 3

2 2 2 1

3 3

� �,�

�*�� �,�

: �*

→

→








t t

t f t f

Log L �� �� � ||
�

L L L
junct J3 3 1

 →














g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 44

2.2.4 Reductional transjunctive constellations

Total transjunctions, but reduced to only one sub-system interaction.

Reduced transjunctions occurs for all types of transjunctions. It has to be applied gen-
erally for all 8 transjunctional types.

>’

t X J J Y

t J
t X

f Y

f X

t Y

f
1

1
2

2

2

2

1
� � ��

����
�

�
��

�

�
�

����
> �� � �

������
�

�

� � �

�

�

X J J Y

f J
t X

t Y

t X J J Y

t X

t

>

>

1
2

2

2

2

2
YY

f X J J Y

f X

f Y

t X J J Y

t J

����
� � �

�

�

��

� � �

����

2

2

2

3

3

>

>
�����

� � �

���

f X J J Y

f J
3

3

>

t X J J Y

t J

f X J J Y

f J

t X J

1

1

1

1

2

� � ��

��
����

� � �

����

� �

< <

<< <J Y

t X

t Y

f X J J Y

f X

f Y

t X J

�

�

�

����
� � �

�

�

��

� �

2

2

2

2

2

3
<< <J Y

t J
t X

f Y

f X

t Y

f X J J�

�����
�

�
�

�

�

����
� � �

3
2

2

2

2

3
YY

f J
f X

f Y3
2

2

���
�

�
�

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 45

2.2.5 Composed transjunctional constellations
Logical operators with more than one transjunction can be composed out of the gen-

eral tableaux rules for single transjunctions. Like for all mediated compositions they
have to fulfil the conditions of mediation (CM).

Systematic semantics

Archtectonics

Composition of transjunctions

trans J J

� �

, , ��() ⊕ JJ trans J trans trans J
Example

J

, , �� , ,
:

, ,

() = ()

<> JJ J J J

J J CM and

() ⊕ <>() = <> <>()
<>()∈

�� , , �� , ,

, , � �JJ J CM J CM, , � � , , �<>()∈ ⇒ <> <>()∈

<><>()  →() ()J L L
transtransjunct

: �*�� � �3 3 LL L L L L L L L3
1 2 2 1 3 2 1

() () ()
:�(||),� ||� ,� || ||�




 →
<>

Log L L L
transjunct1 1 1 1

: �*� �� � ||�LL
f t f f

t f f f2
1 1 2 3

1 1 2 3

��:�
�*�� �,�

�*�� �,�
��

→

→








 →
<>

Log L L L
transjunct2 2 2 2

: �*� �� � �
�

|||� �:
�*�� �,�

�*�� �,�
L

f t t t

t f t t1
2 2 1 3

2 2 1 3

→

→








 →Log L L L L L
junct J3 3 3 3 2

: �*� �� � || �||�
� 11

�
















PM O O O
M log log log
M log
M log

P1 2 3
1 1 1 1
2 2
3 3

∅ ∅
∅ ∅

����

MM O O O
M log
M log log log
M log

1 2 3
1 1
2 2 2 2
3 3

∅ ∅

∅ ∅

�����������

PM O O O
M log log log
M log log log
M

1 2 3
1 1 1 1
2 2 2 2
33 3∅ ∅

< >

log

Op trans J J Op

���

,�,� :�������������� << > <J trans J Op trans trans,� ,� :����������� ,� ,�JJ
PM O O O
M tran trans trans
M J
M J

P
>

∅ ∅
∅ ∅

:

����

1 2 3
1
2
3

MM O O O
M J
M trans tran trans
M J

PM O O1 2 3
1
2
3

1 2
∅ ∅

∅ ∅

���

OO
M tran trans trans
M trans tran trans
M J

3
1
2
3 ∅ ∅

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 46

 Diagramm 13 Composition of a double transjunction tableaux

Op trans J J Op J trans J Op tra< > ⊕ < > = <,�,� ��� ,� ,� �� nns trans J
t X JJ Y

t X

t Y

t
,� ,� :

� � ��

�

�

�������

>
<>

1

1

1

11

1
2

2

2

2

� � ��

����
�

�
��

�

�

������
X J J Y

t J
f X

t Y

t X

f Y

<>
��

� � ��

�

�
��

�

�
��

�

�

t X J Y

t X

t Y

f X

t Y

t X

f Y

1

1

1

2

2

2

2

<><>

ff X JJ Y

f X

f Y

f X J J Y

f J

1

1

1

1

1

� � �

�

�

�����
� � �

����

<> <>

tt X

t Y

f X J Y

f X

f Y
2

2

1

1

1

�

�

�������������
� � �

�
�

�

<><>

���
�

�

� � �

����
�

�

�����

t X

t Y

t X JJ Y

t J
f X

f Y

t

2

2

2

2
1

1

<>
22

2

2

2
� � �

�

�

�������������
� � �X J J Y

t X

t Y

t X J<> <><> YY

t X

t Y

f X

f Y

f X J J Y

f X

f Y

�
�

�
�
��

�

�

� � �

�

�

��

2

2

1

1

2

2

2

<>
���

� � �

���
�

�
��

�

�

�����
f X JJ Y

f J
f X

t Y

t X

f Y

2

2
1

1

1

1

<>
���������

� � �

�

�
��

�

�
��

f X J Y

f X

f Y

f X

t Y

t
2

2

2

1

1

1

<><>

��

�

��

� � �

���
�

�

����
� �

X

f Y

t X JJ Y

t J
t X

t Y

t X

1

3

3
1

1

3
<> JJ J Y

t J
f X

t Y

t X

f Y

t<> �

����
�

�
��

�

�

���������

3
2

2

2

2

3
�� � �

����
�

�
���

�

�
��

�

X J Y

t J
t X

t Y

f X

t Y

t X

<><>

3
1

1

2

2

2

ff Y

f X JJ Y

f J
f X

t Y

t X

f

2

3

3
1

1

1

�

������

� � �

���
�

�
��

�

<>

11

3

3
2

2
�

�����
� � �

���
�

�
�

��������

Y

f X J J Y

f J
f X

f Y

<>
����

� � �

����
�

�
��

�

�
��

f X J Y

f J
f X

f Y

f X

t Y

3

3
2

2

1

1

<><>

tt X

f Y
1

1

�

�

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 47

Composition as definition

The composition operation Op+ is not simply a conjunction between two formulas
because it overwrites the J-part.

But what does a conjunction of the parts mean?

Part 1: Tabl1

H X J J Y X Y

t X J J Y

� � � � � � ��

� � � �

= <>() ∧∧∧ <>∧∧()
<>()

1
∧∧∧∧ <>∧∧()

<>()

<>∧∧(

� � ��

� � � �

� � ��

X Y

t X J J Y

t X Y
1

1
))

t X

t Y

t J
f X

t Y

t X

f Y

1

1

1
2

2

2

2

�

�

����
�

�
��

�

�

f X J J Y X Y X J
1
� � � � � � ��� � �<>() ∧∧∧ <>∧∧()() →→→ <><> ��

� � � � � � ��

� � �

Y

t X J J Y X Y

f X J
1

1

<>() ∧∧∧ <>∧∧()

<><> YY

t X J J Y

t X Y

t X

t Y

t J

1

1

1

1

1

� � � �

� � ��

�

�

��

<>()

<>∧∧()

���
�

�
��

�

�

� �

�
�

�

�

f X

t Y

t X

f Y

f X

f Y

xx

t X

t Y

xx

2

2

2

2

1

1

2

2

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 48

Part 2: Tabl2

f X J J Y X Y X J
1
� � � � � � ��� � �<>() ∧∧∧ <>∧∧()() →→→ <><> ��

� � � � � � ��

� � �

Y

t X J J Y X Y

f X J
3

3

<>() ∧∧∧ <>∧∧()

<><> YY

t X J J Y

t X JJ Y

t J
t X

3

3

3
1

� � � �

� � ��

����
��

�

<>()

<>()

tt Y

t J
f X

t Y

t X

f Y

1

3
1

1

1

1

�

�����
�

�
��

�

�

�?����������xxx xx

f J
f X

t Y

t X

f Y

f X

f

������

����
�

�
��

�

�
��

�
3

1

1

1

1

2

22
�

�� ������ ������ ������??� � �

Y

xx xx xx closed w⇒ iith Tabl�
1

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 49

2.3 Rules and Definitions in PCL(3)

2.3.1 Unary and binary constellations

2.3.2 Dualities for junctions

2.3.3 Dualities for transjunctions

¬ ¬() ⇔⇔⇔ =

¬ ¬ ¬

i i X X i

X

� � � � ,� ,�

� � �� �

() ()

(

3 3

1 2 1
3

1 2

)) ()� � �� � �()() ⇔⇔⇔ ¬ ¬ ¬()()2 1 2
3X

¬ = ¬ ¬()
¬ = ¬ ¬

3
3

1 2
3

4
3

2 1

� �: � � �

� �: � �(�

()
�

()

()
�

X X

X XX

X X

()

()
�

()

�)

� �: � � �

��������

3

5
3

1 2 1
3¬ = ¬ ¬ ¬()()

�������: � � ��
()= ¬ ¬ ¬()()2 1 2
3X

¬ ∨ = → ⊕⊕

¬ ∨
1

3 3 3 3 3

2
3

� � � � � � � �

� �

() () () () ()

()

X Y X Y

X (() () () ()� � � � �3 3 3 3Y X Y= ∨→ ∨

¬ ¬ ∧ ∨ ∧ ¬() ⇔⇔⇔ ∨∧∨5 5
3

5
3 3 3� � �� � � � �() () () ()X Y X Y

¬ ¬ ∧ ∨ ∧ ¬() ⇔⇔⇔ ∨∧∨5 5
3

5
3 3 3� � �� � � � �() () () ()X Y X Y

¬ ¬ ⊕⊕⊕ ¬() ⇔⇔⇔ ⊗⊗⊗5 5
3

5
3 3 3� � � � � � � � �

�

() () () ()X Y X Y

�� ,� � � ,�⊕ ⊗ = ∧ ∨{ }

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 50

Full total transjunction defined as a conjunction of 2 reductional transjunctions. (???)

Ternary and n-ary constellations

 X J J Y X J J Y X J J Y� � �: � � � � � � �<>() === >() ∧∧∧ <()

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 51

2.4 Tableaux proofs in PolyLogics
2.4.1 Junctional and negational constellations

At a first glance it seems that our job can easily be realized by combining logics and
to combine logics to combined logics, PolyLogics, seems to be an equally easy job. As
usual, the devil is in the detail, and because PolyLogics are introduced on a very basic
level, we are confronted, step by step, by such concrete problems.

polylog id id red

thematize Boole

() (, ,� �)

�(�

3

aan definition

identify frames

lambda

,� �)

�

(

()3

 ��)

(� �)

(� �)

() ()

()

X Y

lambda neg

lambda or

3 3

2

3

iidentify frame

define or

lambda X Y

�

()

.1 1

1

 (� � �)perm X or Y2
1















































�

� .identify frame

define impl

lam

2 2

2

bbda X Y

neg X or Y

()

�(� � �)2
2















































identify frame

defi

� .3 1

nne or

lambda X Y

perm X or Y

3

2
3

()

(� � �)















































































































































¬ ∨ = ∨→ ∨2
3 3 3 3 3� � � � � � �() () () () ()X Y X Y

PM O O O
M log
M log
M log

PM O O O1 2 3
1 1
2 2
3 3

1 2
∅ ∅

∅ ∅
∅ ∅

����

33
1
2
3

M or
M impl
M or

∅ ∅
∅ ∅

∅ ∅

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 52

2.4.2 Junctional constellations without negations

0 3 113 113 113.� � � � ��� � � � �X Y Z X Y∧() → ≡ → →() () () () ZZ

f X Y Z X

()

∧() → → →() () ()1
1

3 113 113 1

.�� � � � ��. .� �
113 113

0

2
1

3

() ()

→()() ()

∧() →()

� � � ��

.�� � � �

Y Z

t X Y 33

1
3 3

1

3 1

4

()

() ()

()

→ →() ()
����� �

.�� � � � � ��

Z

f X Y Z

..�� � � ��������������

.�����

t X Y

f Z
1

3

1

2

5

∧() ()()

������������������������ �

.�� ��������

2

6
1

()

t X ����������

.�������������������

.�

4

7 4

8

1

()

()t Y

ff X

t Y Z

f Y t Z
1

1
3

1 1

3

8� �

�� � � ���

����������

→() ()()

(()

�

���� ����� ������ ����xx xx xx

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 53

2.4.3 Junctional constellations with negations

 Diagramm 14 Junctional formula

Incomparability occurs
for the signatures f1
and t3, also for f3 and
t1.
The tableau is decom-
posing the mediated
formula into its sub-sys-
tems. Therefore the in-
dices of the signatures
have to be taken into
account. There is no
global signature fro
them, say t and f, with-
out indices.
In the tree example,
the notational frame of

different sub-systems OiMi is not used because the indices are doing the job.
 Otherwise it would be even
more clear that the signatures
and terms are not comparable
as the diagram shows.
That is, the branches to com-
pare are localized in different
sub-systems OiMj.

Our tableau development of
the formula shows us that we
are running into incompatibili-
ties disproving the formula.

But, interestingly, the definition of the local implication impl2 can be verified.

f X Y X Y1 2
3 3 3 3 3� � � � � � � �() () () () ()¬ ∨() →→→ ∨→ ∨()())

¬ ∨()
∨→ ∨()

t X Y

f X Y

1 2
3 3 3

1
3 3

� � � �

� � �

�

() () ()

() ()

������������� �

������������� �

�

()

()

f X

f Y

t

1
3

1
3

1 ¬¬

¬ ∨

2
3

3
3 1

3

3 2
3

� �

�

??

�
�

��

� � �

()

()
()

() (

X

t X
t Y

xx

t X 33 3

3
3 3

3

) ()

() ()

�

� � �

����������� �

Y

f X Y

f X

()
∨→ ∨()

(()

()

()

()

������������ �

� �

�

??

�

3

3
3

3 2
3

1
3

f Y

t X

t X

¬
tt Y

xx
3

3� ()

M1 M2 M3 M1 M2 M3 M1 M2 M3

O1 O2

G103 G000 G103

#

O3

#

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 54

The environment of
impl2 is not to satisfy.
Asymmetric permuta-
tions in binary logical
function, (neg X opn
Y), are often destroy-
ing the harmony of
med ia t ion o f t he
whole function.
From a local point of
view, the definition of
impl via neg plus disj
is working.
Obviously, the formula
has to be set into a

more complex environment to fulfill the conditions of mediation for the whole complex-
ion. Another approach is to rethink the definitions of the involved implications.

Other methods of formalizing PCL may use additionally global values to tackle the
problem. But global values don’t tell us much about the local conditions. A mechanism
of mappings could be introduced which is negotiating between local and global view-
points and tries to resolve the local problem of disturbed harmony and incompatibility.
But this would involve additional operators not yet accessible in the presented frame-
works.

Comparability: Contradiction and Distance

Contradiction in PolyLogics is, until now, defined strictly local. The global aspect
comes into play only with the collection of local situations. Thus, a formula is globally
true iff it is true for all local sub-logics. There is nothing wrong with that.

Until now, strictly global considerations had been reductional, denying the local
subs-system attributes. Thus reducing truth values to natural numbers as a set of truth
values. Like in usual multi-valued logics, but surely with different use for functions.

A new approach can be introduced with the concept of distance between locally in-
comparable truth values. If a term is truei for systemi and there is a term in systemj with
value falsej and both occur in a common development, a new systemk can be intro-
duced reflecting in systemk on the constellation (truei , falsej) as the constellation (truek,
falsek) and observing a contradiction in systemk with a specific distance between sys-
temi and systemj.

Thus, agent of systemi insists on true, agent of systemj insists on false.
And for an agent of a systemk , which is on a higher or lower level than both, it can

be comparable because both are arguing still in the framework of semantics of truth
and false. From the 3rd position it turns out to be a contradiction. But this new interpre-
tation is not denying the incomparability between the local systemi and systemj.

It could be called a negotional mediation. And is a resolution of a global conflictive
situation. This negotiation as a re-interpretation happens between different local sys-
tems and is therefore not itself local but global. But the result of the re-interpretation is
realized and localized in an own local system, thus, again local.

Thus, (truei, falsej)=incomparabel, becomes (truek, falsek)=contradiction.
Obviously, the old constellation has to be enlarged and re-interpreted by this model-

ing procedure. For this reason too, it isn’t a reduction to global numeric truth values.

f X Y X Y3 2
3 3 3 3 3� � � � � � � �() () () () ()¬ ∨() →→→ ∨→ ∨()())

¬ ∨()
∨→ ∨()

t X Y

f X Y

2 2
3 3 3

2
3 3

� � � �

� � �

�

() () ()

() ()

������������� �

������������ �

�

()

()

t X

f Y

t

2
3

2
3

2 ¬22
3

2
3 2

3
�

� �
�

()

()

()
X

f X

xx

t Y

xx

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 55

2.4.4 Balanced junctional formulas

 Diagramm 15 A DeMorgan formula

f X Y X Y1 2 2
3 3

2
3 3� � � � � � � � �() () () () (¬ ¬ ∨ ¬() →→→ ∨∧∨ 33

1 2 2
3 3

2
3

)

() () ()� � � � �

��������

()()
¬ ¬ ∨ ¬()t X Y

f11
3 3

1
3

� � �

������������������� �

() ()

(

X Y

f X

∨ ∧ ∨()
))

()

() (

������������������� �

� � �

f Y

t X

1
3

1 2 2
3¬ ¬ ∨ 33

2
3

3 2
3 3

2
3

3

) ()

() () ()

� � �

� � � � �

�

¬()
¬ ∨ ¬()
¬

Y

t X Y

t 22
3

1
3

3 2
3

1
3

3

�

� ��

� �

�

�

�

��

()

()

()

()

X

t X

xx

t Y

t Y

xx

t

¬

�� � � � �

� � �

() () ()

() ()

¬ ¬ ∨ ¬()
∨ ∧ ∨(

2 2
3 3

2
3

3
3 3

X Y

f X Y))

¬

����������� �

������������ �

�

()

()

f X

f Y

t

3
3

3
3

1 22
3 3

2
3

1 2
3

3
3

� � � �

� � �

� �

() () ()

()

()

X Y

t X

t X

xx

∨ ¬()
¬ tt Y

t Y

xx

1 2
3

3
3

� �

�

()

()

¬

f X Y X Y3 2 2
3 3

2
3 3 3� � � � � � � �() () () () (¬ ¬ ∨ ¬() →→→ ∨∧∨))

() () ()

()

�

� � � � �

�

()()
¬ ¬ ∨ ¬()
¬

t X Y

f X

2 2 2
3 3

2
3

2 2
3 �� � �

� � �

� �

() ()

() ()

(

∨ ¬()
∨ ∧ ∨()

¬

3
2

3

2
3 3

2 2
3

Y

f X Y

f X))

()

()

()

() (

� �

�

�

�
��

�

f Y

t X

t Y

f X

xx

f Y

2 2
3

2
3

2
3

2
3

2
3

¬

))

�������������������

xx

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 56

Notational convention

If we know in which polylogical constellation we are working, all sorts of indices,
indicating complexity, type of logic, etc., can be omitted.

If a formula is properly decomposable in its sub-systems we obviously also can omit
its neighbor operators and variables and deal with the separated sub-systems only.

f X Y X Y

t
3 2 2 2

2 2 2

� � � � � � � �

�

�

¬ ¬ ∨∨∨ ¬() →→→ ∨∧∨()()
¬ ¬ �� �� �

� �� �

� ��

� �

X Y

f X Y

f X Y

f

∨ ¬()
¬ ∨ ¬()
∧()

¬

2

2 2 2

2

2 2
XX

f Y

t X

t Y

f X

xx

f Y

xx

2 2

2

2

2 2

� �

�

�

�
��

�

������������

¬

��������

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 57

2.4.5 Tautology property
The above formula H is closing for both signatures F1 and F3. The formula H is a

tautology iff its tableaux Tabl close in all branches for the signatures F1 and F3.
A branch is closed iff it contains the signatures Ti, Fi for the same terms.
A tableaux is a connected graph with a tree structure. That is, with an origin and a

succession of branches connected to the origin.

A polylogical complexion, a rhizome, is a ordered list of trees with an ordered set
of origins. The order of the ordered set of origins is ruled by the proemial relation.

To use more familiar terminology we can say, a polylogical complexion is represent-
ed by a list of trees. More exactly it is a polycontextural list of trees. Polycontextural,
because the listed trees are not only listed but mediated.

Also the tautology test or other formula development can be done successively, es-
pecially in the manual case of formula developments, it is ruled by definition that these
different developments have to be realized simultaneously, say in parallel. It is the
same formula which is tested for the different sub-system related semantic attributes.
This has consequences for the implementation not considered in the present presenta-
tion. Formally the consequences are related to the fact of polycontexturally distributed
syntactical induction principle. The decomposition steps are ruled by induction and
therefore each sub-system has its own induction.

The definition of the tautology attribute thus can be condensed to the following for-
mulation:

2.4.6 Transjunctional constellations without negations

Pattern id red S S S S� ,� :� � � �;� �;�{ } →
123 113 133 1311

3 1 3 3

()
∈() ()

:

�H taut iff ETF H simul ETF HH 3()

 H taut iff E T F F H 13 133 3 3 1 3 3() () () ()∈�

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 58

2.5 Reductional constellations with negations
Incompatible situations turned into reductions.

� ���������������������������incompatibility ���� �

�

,� ,�

reduction rules

p p3 1 3() ()∧ ∧ ∧ ¬ ≡ ⊥ ∅ ∅[]
pp p

p p

3 2 3

3 3 3

() ()

() ()

∧ ∧ ∧ ¬ ≡ ∅ ⊥ ∅[]
∧ ∧ ∧ ¬ ≡ ∅ ∅

,� ,�

,� ,��

,� ,�

⊥[]
∨ ∧ ∧ ¬ ≡ ∅ ∅[]
∧ ∨ ∧ ¬ ≡ ∅

() ()

() ()

p p T

p p

3 1 3

3 2 3 ,,� ,�

,� ,�

�

���

T

p p T

p

∅[]
∧ ∧ ∨ ¬ ≡ ∅ ∅[]

∧ ∧ ∧

() ()

()

3 3 3

3 ¬¬ ≡ ⊥ 

∨ ∧ ∧ ¬ ≡

()

() ()

1 3 2 2

3 1 3 3

p p p

p p T p p

,� ,�

,� ,� 33

3 2 3 1 1

3 2

 

∧ ∨ ∧ ¬ ≡ ⊥ 

∧ ∨ ∧ ¬

() ()

()

p p p p

p p

,� ,�

33 3 3

3 3 3 1 1 1

()

() ()

≡  

∧ ∧ ∨ ¬ ≡ ¬

p T p

p p p p

,� ,�

� ,� ,�⊥⊥ 

∧ ∧ ∨ ¬ ≡ ¬ 
() ()� ,� ,�

�

p p p p T3 3 3 2 2 2

PM O O O

M

M p

M p

PM O O O

M T

M

1 2 3

1

2

3

1 2 3

1

2

⊥ ∅ ∅

∅ ∅

∅ ∅

∅ ∅

∅
����

∅∅

∅ ∅

∅

∅ ⊥ ∅

∅ ∅ ∅

p

M p

PM O O O

M p p

M

M

PM

3

1 2 3

1

2

3

���

���

����

OO O O

M

M T

M p p

PM O O O

M p p

M

1 2 3

1

2

3

1 2 3

1

2

∅ ∅ ∅

∅ ∅

∅

¬ ∅

∅ ∅

���

∅∅

∅ ∅ ⊥

∅ ∅ ∅

¬ ∅

∅ ∅M

PM O O O

M

M p p

M T3

1 2 3

1

2

3

����

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 59

2.6 Transjunctional constellations and tableaux proofs
Step-wise concretization of the presentation. First, simple formulas can be written

without considering the OM-structures, using only the rules of the sub-system-indices of
the formulas. Second, especially for transjunctional formulas, the sub-system structure,
O (=S), is involved but omitting the M-structure. Third, for full interactional and reflec-
tional formulas, the whole OM-structure has to be used. The following diagrams show
the development of a simple negational and transjunctional formula, using only the sub-
system structure. All those notational forms are for manual use only and to guide nec-
essary further implementations. A further step follows by the application of meta-rules
of the term calculus. Finally, a semi-automated proof by the LOLA-implementation is pre-
sented. A machine oriented presentation can be set into a different scheme.

 Diagramm 16 Tableau presentation

Nr S1

1

2

3

S2 S3

t3 X tr.et.et Y

f3 N5 (N5 X vel.tr.vel N5 Y)

t3 N5 X vel.tr.vel N5 Y

t3 X

t3 Y

Nr

(0)

(0)

(2)

(1)

(1)

(3)

(6)

t3 N5 X t3 N5 Y

f3 X f3 Y

t2 N5 X

f2 N5 Y

f2 N5 X

t2 N5 Y

(3)

t1 X

t1 Y (1)

(1)

S3

f1 X t1 X

t1 Y f1 Y

(6)

(7)

(S3)

(S2)

(S3)

x x

x x

4

5

6

7

8

9

10

(0) f3 H1 = f3 ((X tr.et.et Y) .iij. N5 (N5 X vel.tr.vel N5 Y))

(�,��,�� �)
(� ,�,�� �)
(�,�� ,� �)
(

∅ ∅
∅

∅

S
S S

S S

3
1 3

2 3
�� ,�,�� �)

(�,���,����)

S S

x x

1 3∅

∅

S3

S3S1|

S3S2

S2S1

|

�,�,� �

� ,�,� �

�,� ,�

∅ ∅()
↓

∅()
↓

∅

S M

S M S M

S M

3 3

1 3 3 3

2 3 SS M

S M S M

3 3

1 3 3 3

�

� ,�,� �

()
↓

∅()

Unification

����

(� �)

(� �)�

()α

α γ

β δ

3

3 1

3 1

(3)

trans

trans

neg

rules:

tr: transjunction
et: conjunction
vel: disjunction

i,j: implication
S3

g g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 60

 Diagramm 17 Tableaux presentation

Sub-systems S1 and S2 are closing directly, S1 at step 8 and S2 at step 9. This would
be enough to close the tableaux for S1 and S2. But there is an additional part of the
formula which is closing separately in S1, closing at step 13, encircled in red.

The different structural diagrams above should show clear enough how the formula
development is working. The step-wise development of the formula guarantees the con-
nectedness of the branches of the different trees, despite the jumps into other sub-sys-
tems, which are necessary to produce a semantic result on the base of the signatures.

Nr S1

1

2

3

S2

f1 N5 (N5 X vel.tr.vel N5 Y)

t2 N5 X vel.tr.vel N5 Y (2)

Nr

(0)

(0)

(2)

(3)

(3)

(4)

(5)

S2

4

5

6

7

8

9

10

(0) f1 H1 = f1 ((X tr.et.et Y) .iij. N5 (N5 X vel.tr.vel N5 Y))

t1 X tr.et.et Y t2 X tr.et.et Y

f2 N5 (N5 X vel.tr.vel N5 Y)

t1 X (1)

t1 Y (1) t2 N5 X (3)

t2 N5 Y (3)
f1 X (4)

f1 Y (5)

x

t2 X (1)

t2 Y (1)

f1 X (1)

f1 Y (1)

t1 N5 X | t1 N5 Y (8)

11

12

13

 (10)

 f2 X | f2 Y (9)

f2 N5 X t2 N5 X
t2 N5 Y f2 N5 Y

(8)
(8) t1 X f1 X

 f1 Y t1 Y

 x x

t1 N5 X vel.tr.vel N5 Y

 --- ---
 x x

x

x

x

M1 M2 M3 M1 M2 M3 M1 M2 M3

O1 O2

G110 G120 G000

#

O3

#

xx
xx

x

x

#

g g



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT

DERRIDA‘S MACHINES 61

2.6.1 Reduction of complexity by unification and meta-rules

The concrete complexity of the tableaux tree of formula H1 can be reduced with the
help of the unification method of Smullyan and, as a step further, with the application
of some meta-rules over tableaux trees, that is, the term rules of polylogic. The diagram
structure is represented by the indices of the sub-systems only.

 Diagramm 18

Unification tableaux tree development of f1H1

The example of unification preserves the tree structure induced by the formula. The
next example, which applies additionally the term rule R1, is reducing and separating
junctional and transjunctional parts, and therefore, offering a better economy of the
sub-system parts which in the latter example are still distributed over the whole tree.

 Diagramm 19

Unification of f1H1 with meta-rules

unv f H(�)�:

����������������������������

1
1

3()

�������� �
������������������������������

α3()
���� ����

����������������������������� �α3
1

������������� �

�������������������������

α

α

3
2

33 1 3 2��� ������ �������� �������

�������

δ β γ() ()
������������������� ��� ������ ������

�
α δ3

1 1
1

�����

������������������������� ��� ����α δ3
2 2

1 ββ β
γ

1
3

2
3

1

��� ���

��������������������������

()

�������������
��

���
�

��
γ

γ

γ

γ
1
1

2
1

3
1

4
1

Term rule R realized as

simul et

� � � � :

���� � � �

1

α δ() �� � �

���� �� �� �� �� � �

β γ

α β δ γ

simul

et simul et

()
() ())����

nv f H(�)�:
�����������������������������

1
1

3()

������� �
�������������������������������

α3()
��� ����

����������������������������� ��α3
1

�������� �

���������������������������
�

α

α

β

3
2

3

33

1

1





















��������
�� ��

��

δ

γ

�������

����������������������������
α

α

3
1

33
2

1
1

2
1

������������ ��������

��������������

δ

δ

�������� ��� �������
�
� �β β

γ

γ

γ

γ1
3

2

3 1
1

2
1

3
1

4
1

g g



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT

DERRIDA‘S MACHINES 62

The tableau tree for f3H1 is even more confusing in its full concrete manual develop-
ment, which first has to be studied before it can be reduced with the application of
meta-rules to the following unification.

 Diagramm 20

Unification tableaux tree development of f3H1

Again, the meta-rules are applied, producing a simple house holding of the branches
and their sub-systems.

 Diagramm 21

Unification of f3H1 with meta-rules

System changes, represented as
a change in the index of the for-
mula, say f rom gamma2 to
gamma1, are produced by logi-
cal negators. Their rules are given
with the tableaux rules for nega-
tions of signed formulas. Signed
formulas are very convenient for
complex logics but the polylogi-
cal rules are not depending on
the method of signed formulas.

Each method which is keeping the sub-system indices right is doing the job.

Comment:

dec: decomposition of the complexion into alpha1 and alpha2 parts,
tabl: tableaux rules, producing intra-contextural sub-formulas,
R1: term rule R1, collecting junctional and transjunctional
 parts separately.

unv f H(�)�:

����������������������������

3
1

3()

������� � �
����������������������������

α α1 2()
������ �������

������������������������������ �������������
��������������������

α α1 2() ()
��������� ������������� ��

�������������������������� ����� ������� �����������α α α
1
1

2
1

1
2 ���� ��

������������������������ ����

α

α α

2
2

1 2() (() () ()���� �� ���������

���������������

α δ β2 1 1

���������� ����� ����� � ����� ��α α α δ β
1
1 1

1
2

1
1 2() �������

������������������������ �����

γ

α

2

2
1

()
αα α δ

β β
γ1

1
2
2

2
1

1
2

2
2

1������ � �
� �

� �������

���

()

������������������������������� ���������

α
2
1

����������������������

�
� �

γ

γ

γ

γ
1
1

2
1

3
1

4
1

��� ��������������� ������α α1 2()

������� �� �������������dec α α1() 22()

�������

��tabl α11 2 1 2 2

11

() () ()

()

�� �||� ��� �||�� �

��� �|�

α δ β γ

αR ��������� ��
α

β

δ

γ

2

2

1

1




















��

g g



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT

DERRIDA‘S MACHINES 63

2.7 Term representation of formula development H1

The formula development can be represented by a term calculus. The example in-
cludes rule R

0

and R

1

 of the term list below. This, again, is a linearizations of the nota-
tional approach, but it is exactly what we need for machine readability of an
implemented tableaux prover even if it has a tree representation to comfort the user.

Once, the rules of polylogical systems are clear, it is necessary to realize a (semi-
)automated prove system. It makes not much sense to go one with manual work. Proof
systems like LOLA are supporting the experimental exploration of polylogics, their re-
sults can be implemented to improve the theorem prover. Until now a strict mathemat-
ical approach hasn’t produced much valuable insights beyond existing experimental
knowledge.

 Diagramm 22

Term development for f

3

 H1

The structure of step-wise develop-
ment of the terms can be shown by
brackets only and using the LOLA
notation. Term developments can be
produced semi-automatically by LO-
LA.

f H

t X et t Y sim t X et tY

3

3 3 1 1
1

� :

.� � � � � � �() ()



�� � � � � � � � � � �et f X et fY sim f X et tY or t X e

3 3 1 1 1() () tt fY

t X et t Y et f

�

.� � � � �

1

3 3 3
2

()()











() XX et fY sim t X et tY et f X e� � � � � � � � �
3 1 1 1()



 () tt tY or t X et fY R� � � � � �:� / .

.�

1 1 1 1
1

3

() ()()





∅∅

 () ()(3 1 1 1 1
� � � � � � � �sim t X et tY et f X et tY)) () ()()





 � � � � � � � �or t X et tY et t X et fY
1 1 1 1




∅

 ∅

�����������:� / .

.� � �

R

sim

0

3 1

2

4 

 ∅


()





∅

 ∅

� �

.� � �

or

sim

1

3
5

11











f H
3

1

� :

.� �|||� �& &� �|||� �||�() ()



 () () ()())











() ()[] () ()2.� �& &� �|||� �& &� �||�� �

.� �|||� �& &� �||�

()()





∅



() ()()3
3

(() ()()











∅

 ∅

�& &� �

.� �|||�4
3 1


 ∅


()





∅

 ∅

�||�

.� �|||�

1

3
5

11











Term rule R realized as

simul et

� � � � :

��� � � �

1

α δ() �� � �

��� �� �� �� �� � �

β γ

α β δ γ

simul

et simul et

()
() ())����

g g



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT

DERRIDA‘S MACHINES 64

 Diagramm 23

Semi-automated tree-proof of f3H in LOLA (1992)

f3: ((X taa Y) iij n5 (n5 X oto n5 Y))

 |

 +------ && ----------+

 | |

t3: (X taa Y) f3: n5 (n5 X oto n5 Y)

 |

 +------------------- && ---------+

 | |

 | t3: (n5 X oto n5 Y)

 +------- /// -------+

 | |

 | +--------------+

 +-- && --+ | | |

 | | | +-- && --+ |

t3: X t3: Y | | | |

 |t1: X t1: Y|

 +--------------+

 |

 +--- /// -------+

 | |

 | +--------------+

 +---------- && -----------------------+ | | |

 | | | +-- && --+ |

 | | | | | |

 +---- && ---+ +---------- /// ----------------------+ |t1: X t1: Y|

 | | | | +--------------+

+------+ +------+ | +--+

|[t3:X]| |[t3:Y]| +---- || ---+ | | |

+------+ +------+ | | | +---------- || ---------+ |

 t3: n5 X t3: n5 Y | | | |

 | | | |

 | +---- && ---+ +---- && ---+ |

 | | | | | |

 |f2: n5 X t2: n5 Y t2: n5 X f2: n5 Y|

 +--+

 |

 +--- /// -------+

 | |

 | +--------------+

 +---------------- /// ----------------------+ | | |

 | | | +-- && --+ |

 | +--+ | | | |

 +------- && ------+ | | | |t1: X t1: Y|

 | | | +---------- || ---------+ | +--------------+

+------------+ | | | | |

|[t3:X, t3:Y]| +-- || --+ | | | |

+------------+ | | | +---- && ---+ +---- && ---+ |

 f3: X f3: Y | | | | | |

 |f2: n5 X t2: n5 Y t2: n5 X f2: n5 Y|

 +--+

 |

 +---------------------- /// -------------------------------+

 | |

 | +--+

 +------- && ---------+ | | |

 | | | +------- && ---------------------+ |

+------------+ | | | | |

|[t3:X, t3:Y]| +---- || ---+ | | | |

+------------+ | | | +-- && --+ +---------- || ---------+ |

 +------+ +------+ | | | | | |

 |[f3:X]| |[f3:Y]| |t1: X t1: Y | | |

g g



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT

DERRIDA‘S MACHINES 65

 +------+ +------+ | +---- && ---+ +---- && ---+ |

 | | | | | |

 | f2: n5 X t2: n5 Y t2: n5 X f2: n5 Y|

 +--+

 |

 +---------- /// -------------------------------+

 | |

 | +--+

 +------- && ---+ | | |

 | | | +------- && ---------------------+ |

+------------+ +------+ | | | |

|[t3:X, t3:Y]| |[f3:Y]| | | | |

+------------+ |[f3:X]| | +-- && --+ +---------- || ---------+ |

 +------+ | | | | | |

 |t1: X t1: Y | | |

 | +---- && ---+ +---- && ---+ |

 | | | | | |

 | f2: n5 X t2: n5 Y t2: n5 X f2: n5 Y|

 +--+

 |

 +- /// -------------------------------+

 | |

+-+ +--+

|$| | | |

+-+ | +------- && ---------------------+ |

 | | | |

 | | | |

 | +-- && --+ +---------- || ---------+ |

 | | | | | |

 |t1: X t1: Y | | |

 | +---- && ---+ +---- && ---+ |

 | | | | | |

 | f2: n5 X t2: n5 Y t2: n5 X f2: n5 Y|

 +--+

 |

 +- /// ----------------------------+

 | |

+-+ +--+

|$| | | |

+-+ | +---------- && ---------------+ |

 | | | |

 | | | |

 | +---- && ---+ +------- || ------+ |

 | | | | | |

 |+------+ +------+ | | |

 ||[t1:X]| |[t1:Y]| +-- && --+ +-- && --+ |

 |+------+ +------+ | | | | |

 | t1: X f1: Y f1: X t1: Y|

 +--+

 |

 +- /// -------------------------------+

 | |

+-+ +--+

|$| | | |

+-+ | +------- && ---------------------+ |

 | | | |

 |+------------+ | |

 ||[t1:X, t1:Y]| +---------- || ---------+ |

 |+------------+ | | |

 | | | |

 | +---- && ---+ +---- && ---+ |

 | | | | | |

 | +------+ +------+ +------+ +------+|

 | |[t1:X]| |[f1:Y]| |[f1:X]| |[t1:Y]||

 | +------+ +------+ +------+ +------+|

g g



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT

DERRIDA‘S MACHINES 66

 +--+

 |

 +- /// -------------------------+

 | |

+-+ +--+

|$| | | |

+-+ | +------- && ---------------+ |

 | | | |

 |+------------+ | |

 ||[t1:X, t1:Y]| +------- || ------+ |

 |+------------+ | | |

 | +------------+ +------------+|

 | |[t1:X, f1:Y]| |[f1:X, t1:Y]||

 | +------------+ +------------+|

 +--+

 |

 +- /// ----------------+

 | |

+-+ +--------------------------------+

|$| | | |

+-+ | +------- && ------+ |

 | | | |

 |+------------+ +------------+|

 ||[t1:X, t1:Y]| |[f1:X, t1:Y]||

 |+------------+ |[t1:X, f1:Y]||

 | +------------+|

 +--------------------------------+

 |

 +- /// --+

 | |

+-+ +---+

|$| |+-+|

+-+ ||$||

 |+-+|

 +---+

g g



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT

DERRIDA‘S MACHINES 67

2.8 General Strategy

Distribution of the sub-systems over different places according the OM-matrix.
Using signed formulas to realize the sub-system management.
Developing the sub-formulas of the distributed sub-systems according to their tab-

leaux rules.
Applying first alpha and delta rules to beta and gamma rules.
Applying the meta-rules of the term calculus to organize the distributed results collect-

ed in the trees
Searching for closed branches.

Alternatively, a strict term development which requires its own strategy can be ap-
plied.

g g



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT

DERRIDA‘S MACHINES 68

2.8.1 Interpretations for formula H1

Junctions vs. transjunctions

The difference between junctional and transjunctional logical function has to be ex-
plained first.

Junctions are total functions accepting the values offered by their system.
Transjunctions are composed of partial functions. They reject alternatives of their sys-

tem in favor to values of other systems. Therefore they are composed of acception and
rejection values distributed over different sub-systems. They are intrinsically intra-con-
textural. Transjunctions are obviously trans-contextural, involved in at least two different
contextures (sub-systems).

Junctions, like conjunction and disjunction, but also implication and replication, are
directly dual under DeMorgan operators.

Transjunctions

Between the term (tr.et.et) and the term (vel.tr.vel) a duality is established with help
of the negator N5.

D5 (tr.et.et) = (vel.tr.vel)

This holds for junctions in general: D5 (tr. J.J) = (DJ, tr, DJ)
But this duality is, as all negational situations in polylogics, involved in permutations.

The duality of the transjunction tr is due to its symmetric definition as a total transjunc-
tion.

In general, transjunction are classified in commutative and non-commutative, or sym-
metric and non-symmetric transjunctions. Only commutative transjunctions are directly
dual. They are also called total transjunctions.

Duality-D5 for (tr. et.et): (S123, S2, S3) ––> (S1, S213, S3)

Wordings
System S1 is modeling in itself situations of systems S2 and S3.
System S2 is modeling in itself situations of systems S1 and S3.

2.8.2 General interpretation of term rules: Separability of interactionality

It was emphasized before that the operators of interactionality in polylogical sys-
tems are realized by the logical operators of transjunctions while the intra-contex-
tural logical situations are ruled by junctional operations.

The term rules for formulas with transjunctions are separating the junctional and
the transjunctional parts of the complex formula. These rules correspond to the
DNF of classical logics which are also included in polylogics.

Additional to their proof-technical meaning it is possible to understand these
rules as the rules of separating the intra-systemic part from their trans-systemic re-
lations which are exactly the interactional patterns. That is, the term rules for tran-
sjunctional formulas are the rules, or meta-rules, for interactionality in polylogical
systems.

The set of term rules for transjunctional formulas are based on experiences, intu-
ition and experiments with the implementation in ML of the theorem prover LOLA
(1992) for polylogical systems. They are still waiting for a strict mathematical proof
of correctnes!

The set above of meta-rules is not dealing with systems change produced by per-
mutational operators, also not with reduction and other topics. But it seems that
these topics are not producing any special obstacles.

These meta-rules are of great unificational importance because of their meta-log-
ical status they help to reduce the enormous magnitude of concrete single tableaux
rules to some understandable and accessible structures. The multitude of concrete
logical operators shows the flexibility of polylogical systems to the challenge of
real-world applications. Each concrete situation can be handled by its own con-
crete set of operators. This is not excluding the search for minimal sets of operators
but these new kind of sets turn out to be flexible and adapted to concrete demands
of logical modeling.

The combination of Smullyan unification and the meta-rules makes this polylogi-
cal complexity of concrete situations accessible to further studies.

Following the example of Gentzen and Moisil a calculus focussed mainly on the
meta-rules can be developed. It would emphasize more clear the structure of inter-
actionality between logical systems in addition to their intra-contextural deductibil-
ity.

From a polycontextural point of view, meta- and meta-meta-rules can be under-
stood as a reflectional activity towards the object-system. Therefore it is possible to
model meta-concepts of all degrees in the framework of reflectionality of polylog-
ics. With this, meta-considerations are free to chose between hierarchical and also
heterarchical strategies.

The term rules, as listed below, are emphasizing the separation, or separability,
of transjunctional terms from the junctional. Therefore, they offer a method of sep-
arating from their actionality and of studying interactionality between systems as
such.



 Rudolf Kaehr Dezember 26, 2005 9/16/05

DRAFT

DERRIDA‘S MACHINES 70

3 General term rules

3.1 Term rules for junction and transjunctions

The term calculus for poly-
contextural logics was first
introduced in the work
"Tableaux Beweiser" by
Bashford/Kaehr 1992 as a
first attempt to deal with the
question of meta-rules.

Term Rules

R t et t or t

�

�:������� ��� ���

����

0 1 2 3()
������ ��� ��� � ������

������

t et t or t et t
1 2 1 3() ()

����������� ��� �

���������� �

t or t et t

t et t

1 2 3

1

()
33 2 3

1

() ()

()

� ��� �

:����

���� � ��

or t et t

R

t simul ta ��'� �' �

�����'�� �� �

t simul t a

t t simul ta

()

() ��' ����������

:

��������� ��'� �

t a

R

t et t simul

()

2

tt a

t et t simul ta

' �

��������� �'�� � ����
�����

()

()

���

����������� � �� �'

����������

t simul ta et t

t

()

eet t simul ta

R

t simul

�'�� � ��

:

����������� �

()

{ }
3

�� �� �� ' � � '�

�����������

ta or t simul ta

t or

() { }()

��'�� �� � �' �������������

:

�

t simul ta or t a

R

() ()

4

���������� � �� ' � �' �

��������

t or t simul t a{ } { }()

���� �'�� �' ����������

����������

t or t simul t a()

tt simul ta or t

t or t

{ }() { }

()
� � �� � '

���������� �'��� � ��������

:

����������� � �

simul ta

R

t simul ta

5
())

()
� �'

��������� �� � �' ���

simul t a

t simul ta et t a �����

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 71

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 72

y y g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 74

Unification for PolyLogics

1 Generalized Smullyan Unification for PolyLogics

Obviously, as easily visible, the full magnitude of combinatory possible functions is
not simple to handle, therefore more classifications and unifications has to be intro-
duced. The best guide is given by Raymond Smullyan’s well known method of unifica-
tion. We are studying the familiar case of linear-mediated polylogics in contrast to
tabular architectonics.

1.1 General unification rules

 Diagramm 24 Unified junctions and total and partial transjunctions

 Diagramm 25 Basic unification for total transjunctions

junctions and total transjunction scheme� � � �
��α
��

�

����
�

�� ���
������

��

�

����
�

�
α

α

β

β β

δ
δ

δ

γ

1

2

1 2 1

2

γγ

γ

γ

γ
1

2

3

4

� �

�

�

� � �junctions and partial transjuncction schemes�
��
�

�

����
�

�� ���
�����

α
α

α

β

β β1

2

1 2

��
��

� ��

����
�

�

��
�

�

����
�

� �

δ

δ

δ

γ

γ

γ
γ

γ

α
α

α

1

2

3

4

1

2

1

2

ββ

β β

δ

δ

δ

γ

γ

γ
γ

γ

�� ���
������

��

� ��

����
�

�� �1 2 1

2

1

2

3

44

��
�

�

����
�

�� ���
������

��

�

����
�α

α

α

β

β β

δ
δ

δ
1

2

1 2 1

2

γγ

γ

γ

γ

γ
� ��� �1

2

1

2

γ

γ

γ

γ
1

2

3

4

� ���
















=

1.1.1 Signed formulas

1.1.2 Junctional unification table

 Diagramm 26 Unification for junctions

���
� �

� �

����
�

�� ���
�

� �

π α
π α

π α

π β

π β π β1 1

2 2

1 1 2 2

���

�
�

�

����
�

�
�

�
�

�
� �

π δ
π δ

π δ

π γ

π γ

π γ

π γ

π
1 1

2 2

1 1

2 2

3 3

44 4
�

�
γ

� | | ��������

� �
�
�

�

�

�

α α αi i i

i

i

i

i

t X Y
f X Y
f X Y
f

1 2

∧
∨
→

��

�

�

�

�

�

�

�

��

� ���

�

X Y

t X
f X
t X
f X

t Y
f Y
f Y
t Y

i

i

i

i

i

i

i

i←

�� | | ��������

� �
�
�

�

�

�

β β βi i i

i

i

i

f X Y
t X Y
t X Y
t

1 2

∧
∨
→

ii

i

i

i

i

i

i

i

iX Y

f X
t X
f X
t X

f Y
t Y
t Y
f�

�

�

�

�

�

�

�

��

� ���

�

← YY

y y g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 76

1.2 Classification of unificators

1.2.1 (f,c)- and (klor)-analysis

The rules of mediation are restricting the combinatory of distributed operators.

The sets f and c also
contains the negated
functions.

Junctional mediation

Smediation

� :

,� �/α β{ } ∈ ()3

⇔⇔ { }∈
= () () () ()

� ,� �

� ,� ,� ,�

α β CF

CF ccc cff fcf ffc ,,�

� ,� ������

� ,� ,�

fff

f

c

(){ }
= ∧ ∨{ }
= → ← ↔{ }

Transjunctional mediation

medi

� :

,�,�,� /α β δ γ{ }
aation S CF

CF ccc cff

∈ ⇔ { }∈
= ()

()3

� � ,��,� �

� ,�

α β δ γ

(() () () (){ }
= ∧ ∨ < > <>

,� ,� ,�

� ,�,�,�,�

fcf ffc fff

f ,,�,� ������

� ,� ,� ,�,�

{ }
= → ← ↔ ⇑ ⇓{ }c

� ,�

���������

α β

ααα

ααβ

αβα

αββ

βα

{ }∈
()

()
()
()

()S
3

αα

βαβ

ββα

βββ

()
()
()
()





















∈ ()S 3 ���

α α α

ααα

∈ ∈ ∈

()∈ ()

S S S

S

1 2 3

3

,� ,�

��������� ���

1.2.2 Mediation and unification

1.2.2.1 Identity patterns

pattern id id id S S

med t
id

� ,�,� :� �   →
123 123

1�� � �� ,� � ,� �X Y t X Y t X Y∧()∈ ∧()∈ ∧()∈



α α α1 2 2 3 3 ∈∈ () ⇒ ()∈

∧()∈

()fff S

med f X Y f

� � �

� ,��

α α α

α

1 2 3 3

1 1 2�� �� ,� � � �X Y f X Y fff∧()∈ ∧()∈



 ∈ () ⇒α α β β2 3 3 1 22 3 3

1 1 2 2

β

α α

()∈
∧()∈ ∨()∈

()S

med t X Y t X Y

�

� ,� � ,�� � tt X Y fff S

med

3 3 1 2 3 3� � � � �∧()∈



 ∈ () ⇒ ()∈ ()α α β α

tt X Y t X Y t X Y1 1 2 2 3 3� � �� ,� � ,� �∧()∈ ∧()∈ ∨()∈
 α α α  ∈ () ⇒ ()∈

∧()∈

()fff S

med t X Y

� � �

� ,��

α α β

α

1 2 3 3

1 1 tt X Y t X Y fff2 2 3 3 1� �� ,� � � �∨()∈ ∨()∈



 ∈ () ⇒α α α β22 3 3β()∈ ()S �

pattern id id id S S

X
id

� ,�,� :� �

�

   →

∧∧∧
123 123

YY fff t t t S

X Y

()∈ () ⇒ ()∈
∧∧∧(

()� � �

�

� � �1 2 3 1 2 3 3α α α
))∈ () ⇒ ()∈

∧∨∧()∈

()fff f f f S

X Y

� � �

�

� � �1 2 3 1 2 3 3β β β

ffff t t t S

X Y ff

() ⇒ ()∈
∧∧∨()∈

()� � �

�

� � �1 2 3 1 2 3 3α β α

ff t t t S

X Y fff

() ⇒ ()∈
∧∨∨()∈ (

()� � � �

�

� �1 2 3 1 2 3 3α α β

)) ⇒ ()∈ ()� � � �� �t t t S1 2 3 1 2 3 3α β β

y y g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 78

1.2.2.2 Reductional patterns

pattern id red red S
idredred

� ,� ,� :�   →
123

��

� ,� � ,� �� � �

S

med t X Y t X Y f X
111

1 1 2 2 3∧()∈ ∧()∈ →α α YY ffc S()∈



 ∈ () ⇒ ()∈ ()α α α α3 1 1 1 3� � �

pattern id red id S
idredrid

� ,� ,� :� �   →
123

SS

med t X Y t X Y f X Y
113

1 1 2 2 3� � �� ,� � ,� �∧()∈ ∧()∈ →α α (()∈



 ∈ () ⇒ ()∈ ()α α α α3 1 1 3 3ffc S� � �

y y g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 79

1.2.3 Transjunctional unification table
The general unificational schemes for transjunctions are not as simple as the junction-

al counterparts but there is a clear structure behind the transjunctional table (situation,
configuration).

signature schemes
partial transjunction

� :
� �()< ,,� , , �

�
�

�

���
�

�
''

�

�

i mod

t

f

t

f
i

i

i

=

+

+

1 2 3 3

1 3

1 4

γ

γ

γ

ii

i

i

i

i
t

t

t

t

��

�
�

�

����
� � �

�

�
'

�

δ

δ

δ

δ γ

+

+

+

+

()

1 1

1 2

1

1
δδ

δ

γ

γ

δ

1

1 2

1 1

1 2

1

1

t

t

f

f

f

i

i

i

i

i

+

+

+

+

+

�

� �

�

��

���
� ��

�
��

�

����
�

�
�

����
''

� �
δ

δ

γ

γ

γ
1

1 2

2

1 3

1 4
f

t

f

t
i

i

i

i+

+

+

+

�� ��

�
�

�

�

f

f

f

partial transjuncti

i

i

i

+

+

+

2

1 1

1 2

δ

δ

δ

oon i mod

t

f

t

i

i

i

�(),� , , �

�
�

�

�
''

�

�

> =

+

+

1 2 3 3

1 3

1

γ

γ

γ
44

1 1

1 2

1���
���

��
�

�

����
� ��

�

f

t

t

t

t
i

i

i

i

i

δ

δ

δ

δ

+

+

+

+11 1

1 2

1

1 1

1 2

�

�

���
� � �

�

�
'

�

�

δ

δ

δ γ

δ

δt

f

t

ti

i

i

i+

+

+

+

()

���

����
�

�� �

�

�
''

� �t

f

t

f

t
i

i

i

i

i

+

+

+

+

+

1 1

1 2

2

1 3γ

γ

γ

γ

11 4

2

1 1

1 2
�

���
� ��

�
�

�

�

γ

δ

δ

δ

f

f

f

partial tran

i

i

i

+

+

+

ssjunction i mod

t

t
i

i

�(),� , , �

�
�

�

�
''

=

+

1 2 3 3

1 3

γ

γ
��

�

���
���

��
�

�

����
�

f

f

t

t

t

i

i

i

i

i

+

+

+

+

1 4

1 1

1 2

1

γ

δ

δ

δ

���

�
�

�

���
� � �

�

�
'

�

δ

δ

δ

δ γ

δt

t

f

fi

i

i

i+

+

+

+

()

1 1

1 2

1

1 1

ff

f

t

t

t

i

i

i

i

i

+

+

+

+

+

1 2

1 1

1 2

2

1

�

� �

�

�
''

��

����
�

�
δ

γ

γ

γ

�� �

�

���
� ��

�
�

�

γ

γ

δ

δ

δ
3

1 4

2

1 1

1 2
f

f

f

t

parti

i

i

i

i+

+

+

+

aal transjunction i mod

t
i

� �(),� , , �

�
�

�
''

= 1 2 3 3

γ

��

���
���

�
�

�

���
�

�

f

t

f

t

t
i

i

i

i

i

+

+

+

+

1 3

1 4

1 1

1 2

γ

γ

δ

δ

δ

��
� ��

�
�

�

���
� � �

�

�
't

t

t

f

f
i

i

i

i+

+

+

+
()

1

1 1

1 2

1
δ

δ

δ

δ γ

ii

i

i

i

i

f

f

t

t

+

+

+

+

+

1 1

1 2

1 1

1 2

2

�

�

� �

�

�
'

��

����
�

δ

δ

γ

γ

γ ''

� ��
�

���
� ��

�
�

�

f

t

f

t

f
i

i

i

i

i

+

+

+

+

+

1 3

1 4

2

1 1

1

γ

γ

δ

δ

δ
22

1 2 3 3total transjunction i mod

t
i

� �(),� , , �

�

<> =

��

� �

�

��

�

�

���
���

� ��

δ

δ

δ

γ

γ

γ

t

t

f

f

t

ti

i

i

i

i

1

2

1 1

1 2

+

+

ii

i

i

i

if

t

t

t
+

+

+

+

+

1 3

1 4

1

1 1

1 2

� �

�

�����
� ��

�
�

�

γ

γ

δ

δ

δ

����
� ��

�
�

�

����
� ��

�

f

f

f

t

f
i

i

i

i

i

+

+

+

+

+

1

1 1

1 2

2
δ

δ

δ

γ

11 1

1 2

1 3

1 4

2

� �

�

� �

�

��

���
� ��

�
γ

γ

γ

γ

δ

t

t

f

f

t

i

i

i

i

+

+

+

+

ii

i
f

+

+

1 1

1 2

�

�

δ

δ

f

f

f

f

t

i

i

i

i

i

+

+

+

+

+

()
1

1 1

1 2

1 1

1 2

�
'

�

�

� �

�

� :

��

δ γ

δ

δ

γ

γ
���� �� ���

�

� �

�

is
f

f

f

t
is

f
i

i

i

i

i+

+

+

+

1 1

1 2

1 1

1 2

δ

δ

γ

γ
++

+

+

+
+

1 1

1 2

1 1

1 2
1 1

�

�

� �

�
�

�� ��
δ

δ

δ

δ
δ

f

f

t
is f

i

i

i
i

y y g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 80

1.2.4 Consistency properties

 Diagramm 27 Propositional consistency properties for PolyLogic(3)

1.2.5 Conjugations

Symmetric conjugations

Between α-terms and β-terms we observe a nice and simple conjugation. Both, α-
and β-terms, are dual.

Conjugation rules

Propositional consistency property for Poly� � � � LLogics

i j s m

F S T S

Z
i

i
i

i

∀ ∀ ∈ ()

∉ ¬ ∉

¬¬ ∈

�:

.� �;�

.� �

1

2 SS S Z C

S S C

i i i

i i i

� �

.� � � ,

.�
�

⇒ ∪ { }∈
∈ ⇒ ∪ { }∈3

4
1 2

α α α

β ∈∈ ⇒ ∪ { }∈ ∪ { }∈










S S C or S Ci i i i i� � � �

�
β β

1 2



∈ ⇒ ∪ { }∈

�

.� � � ,

.�
�

junctions

S S Cj j j5

6
1 2

δ δ δ

γ ∈∈ ⇒ ∪ { }∈ ∪ { }∈





S S C or S Cj j j j j� � , � � ,
� �

γ γ γ γ
1 2 3 4






∈ ⇒ ∪

� �

'.�' � �

total transjunctions

S Sj j5 δ δ
11 2 1 2

6
� �
, � � � ,

' .�' � �

δ γ γ

γ

{ }∈ ∪ { }∈
∈ ⇒

C or S C

S S

j j j

j jj j

j j j

C

S S C

∪ { }∈
∈ ⇒ ∪ { }∈

γ γ

δ δ δ
3 4

1 2
5

�

�

,

'' .�'' � � , �oor S C

S S

j j

j j

� ,

'' .�'' � ,
�

�

∪ { }∈
∈ ⇒ ∪ { }∈

γ γ

γ γ γ
3 4

1 2
6 CC

partial transjunctions

j











� �

ρ α β

ρ α ρ α ρ α

ρ β

� �� �

� � � � � ��

��

() = ()
() ⇔ () ()()1 2

and

(() ⇔ () ()()
() ⇔

� � �� � ���

� � �� � �

ρ β ρ β

ρ α β β
1 2

1 2

or

or(()

y y g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 81

Asymmetric conjugations

This elegant symmetric duality is excluding logical function like equivalence and con-
tra-valence. This two functions are not symmetric in respect of their possible α-terms and
β-terms. Thus, they are treated as derived functions, composed of implication and con-
njunction. But nevertheless, the tableaux rules for the equivalence shows a clear asym-
metry between the two parts, the truth-part and the false-part.

This solution is perfect for classical logic because there are only a few asymmetric
cases but in polylogical constellations they are quantitatively and from their signifi-
cance in the vast majority. Morphogrammatically it looks more balanced, from the 15
basic morphograms for polylogical functions, 8 are junctional and 7 are transjunction-
al. But this balance disappears quickly because from the 8 junctional morphograms
only 4 are relevant, producing the 8 classical logical functions. On the other hand, the
7 transjunctional morphograms are basic and all full in the game additionally, the de-
liver the structure for different logical interpretations, mirrored as different realizations
of semantic mappings into the morphograms.

To restore a reasonable conjugation theory for asymmetric situations too, we have
to involve the fact that transjunctional functions are better understood not as total but
as combinations of partial functions. Thus, transjunctions can be introduced by apply-
ing the methods used by defining derived functions. Transjunctions are not only com-
positions of partial functions but are the functions which are reflecting the environment
of the logical place they are set. This two observations, partiality and environment,
gives a clue how to construct a general setting for asymmetric conjugations.

�� � ������� � �

�� ��

� �

�

�

�

�

t X Y f X Y

t X

t Y

f X

f

i i

i

i

i

i

↔ ↔

YY

t X

f Y

f X

t Y
i

i

i

i

����� �� ���

�

�

�

Composed conjugation for equivalence

X Y

� � � :

� ��↔ == →() ∧ ←()

∨() ←
� � � �� � � �

� � �� �
�

X Y X Y

If t
i dual
α α

1 2
→→ ∧()

← →

� � �� ,

� ,��
�

f

then
i

dual du

β β

α β α
1 2

1 1 2 aal
← → β

2

y y g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 82

1.3 General rules and tableaux rules
Only for the junctional situation we have a one-to-one correspondence between the

general unification rules and the tableaux rules connected to their sub-systems.
Even between the general rule for total transjunction and its tableaux their is some

degree of differentiation. In the case of reductional transjunctions the general rules for
the transjunction has not to be applied to all its sub-systems. In other words, we can
compose full transjunctions as conjunctions of conditional transjunctions. This applies
to total as well as to conditional transjunctions.

The general rules are defined for "isolated" sub-systems. Between the α−β-rules there
is a duality, and for the case of only one sub-system, that is, for i=1, the whole logical
system is defined. There is no ambiguity of differentiation in that. Polylogical systems
in contrast have to take their whole constellation into account and have therefore to be
characterized by the tableaux and the rules for the whole operators. They can not be
determined by the local characteristics only. But this difference between the general
rules and the tableaux rules is, conceptionally, also at place for the junctional situation
of classical logic. The only difference is that in the classical case there is a coincidence
between the uniqueness of the logical system and the uniqueness of the rules. Never-
theless, they have to fit together.

Even for the classical case, some conventions, which could be questioned, are nec-
essary to adapt of the logical operators to their unificational rules. Examples for a need
of some kind technical conventions are negation and logical equivalence.

The operator J represents junctions as α− or β-parts.

t X J J Y

t J

f X J J Y

f J

t X J

1

1

1

1

2

� � ��

��
����

� � �

����

� �

< <

<< <

<

J Y

t

f X J J Y

f

t X J J Y

t

�

�
����

� � �

�
��

� � �

��

2

2

2

3

3

δ δ

JJ

f X J J Y

f J���
����

� � �

����γ δ
3

3

<

t X J J Y

t J

f X J J Y

f J
1

1

1

1

� � ��

�����
����

� � �

������

> >

γ δδ

δ δ

t X J J Y

t

f X J J Y

f

t X J

2

2

2

2

3

� � �

�
����

� � �

�
��

� �

> >

> JJ Y

t J

f X J J Y

f J

�

����
����

� � �

���
3

3

3

>

y y g

 Rudolf Kaehr Dezember 26, 2005 9/16/05 DRAFT DERRIDA‘S MACHINES 83

1.4 Patterns of unification

Patterns of unification correspond the application of super-operators to standard (id,
id, id)-patterns of logical operators.

1.4.1 General classisfication
Junctional patterns: {a, b } –> {id, red, perm}

Transjunctional patterns: (a, b) –> {id, red, perm, bif}

1.4.2 Special classification
Depending on the distribution of the super-operators {id, perm, red, bif} different

classification systems can be established.

1.5 Contradiction and incompatibility
A branch δ of a tableau T is called closed by contradiction if both X and non-X oc-

curs on δ for some propositional formula X, or if F occurs on δ.

A branch δ of a tableau T is called closed by incompatibility iff X, Y and Z occurs
on δ for some propositional formula X with val(X) /= val(Y)/=val(Z). Such a branch can
be eliminated, cutted away, from the tree.

Branches can be eliminated if they contain at least 3 different variables with 3 dif-
ferent values (for the case of m=3).

perm Z S Z S

red Z

i j j i

i j

:� � � � �

:���

. .

.

∈ ⇒ ()∈
∈

() ()3 3

�� � � �.S Z Si i3 3() ()⇒ ()∈

 red α α α α α α α α α α α α1 2 3 1 1 3 1 3 1 1 3 3() ⇒ () () ()� � ,� ,� ,��α α α1 1 1(){ }

