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Preface

A preface is supposed to explain why you should read the book. Like most
prefaces, this one will make more sense after the fact. Nevertheless, here
goes.

Most mathematicians believe (rather strongly) that numbers behave in
certain well-defined ways. This belief can not be justified by personal ex-
perience. No mathematician has ‘seen’ more than a finite, probably small,
collection of numbers. Instead mathematicians justify their beliefs by giv-
ing proofs. In practice, this means that certain facts about numbers are
accepted as ‘obvious’, and used in carefully reasoned arguments for the
correctness of other facts that are less obvious, or possibly not obvious
at all. Since mathematicians generally are concerned to establish the non-
obvious, little thought is customarily given as to why the ‘obvious’ facts
are correct.

Now, it is an observation as old as Aristotle that one can not prove some-
thing from nothing. One must always begin with some body of ‘obvious’
facts and proceed from there. In practice, most mathematicians content-
edly place hundreds of facts in this ‘obvious’ category in order to get on
with their proper business of discovery and verification of the non-obvious.
But at least once in a mathematician’s career, it is good to take a sharp
look at the status of the ‘obvious’ facts; and it is probably best to do it
early, and get it over with. As we remarked above, it is not possible to
do away with all assumptions, even in mathematics. But, one of the great
achievements of 19th and early 20th century mathematics was the careful
and precise limitation of exactly what a working mathematician must ‘ac-
cept on faith’. That is, it was discovered what can constitute an irreducible
minimum of ‘obvious’ facts.

It is the purpose of this book to present such an irreducible minimum,
and show how most commonly assumed facts about numbers follow directly.

Nonetheless, this book is a bit of a fraud, because like all mathematicians
we still assume that some obvious facts are more obvious than others.
This is a book about the number systems, so for our purposes we assume
as ‘sufficiently obvious’ a variety of pre-numerical facts. Specifically, we
assume, without being too explicit about the matter, several principles
about the behaviour of sets or collections. Now this material too has been
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subjected to a similar treatment, also around the turn of the century. Today
one can find basic set theory developed from a small number of axioms in
many books on elementary set theory. But our book is long enough already,
so we elected to omit this material here. For us the issue is: given a variety
of ‘obvious facts’ from set theory, what elementary properties of numbers
must one accept in order to logically derive the entire basic framework of
mathematics.

It is also the custom for a Preface to present a summary of the material
in the book so that a knowledgeable reader can compare the treatment with
others available, without the necessity of reading the book itself. Well, once
again, here goes.

Each chapter is a mixture of formal development and informal discussion.
Loosely, the formal material is supposed to ‘justify’ many of the things
we routinely do in elementary mathematics, while the informal material
considers why we may have been doing those things in the first place.

After an introductory chapter, we devote each chapter to a single number
system or, in one instance, to a system of notation. Chapter Two presents
the counting numbers via the familiar Dedekind-Peano axioms. The so-
called induction axiom explicitly mentions sets, but throughout the chap-
ter, only very simple set-theoretic principles are needed in applications of
the axiom. Most people take such things for granted, and so do we. There
is, however, an optional section in which we present a justification for def-
initions by recursion, in particular for our definitions of addition, multipli-
cation and exponentiation. The assumed machinery is more elaborate here.
In particular, we use functions, and rely on ‘obvious’ facts about their be-
havior. If one has some knowledge of axiomatic set theory, it will be clear
that the material in this section could easily be turned into a formal treat-
ment. Without a knowledge of axiomatic set theory, the development in the
section should still seem extremely plausible. And finally, one could simply
skip the section entirely (it is optional, after all), provided one is willing to
accept that our definitions of addition, multiplication and exponentiation
are meaningful.

Chapter Three treats the system of whole numbers, that is, 0 is added
to the counting numbers of Chapter Two. It is here that subtraction and
division with remainder are considered.

Chapter Four introduces place-value notation. Partly this is treated for
its own sake, but primarily this chapter is included because of the way we
have chosen to treat real numbers: as infinite decimals. Since a place-value
name is a sequence of digits, this means we have a new mathematical object
to deal with: a finite sequence. It is our belief that finite sequences are
things as immediately apparent to our intuition as numbers themselves,
consequently we do not try to define them away. Rather, we take them
as primitive, and characterize them axiomatically. Once again, if one is
familiar with axiomatic set theory, it will be clear how to establish that
there are objects about which our axioms are true.
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Chapter Five considers the system of rational numbers. The treatment
is straightforward.

Chapter Six introduces finite decimals. These are not often treated sepa-
rately, but they are necessary in our approach as a basis for the treatment
of real numbers in the following chapter. But also, we feel they have been
somewhat slighted by mathematicians generally. Finite decimals are, after
all, the numbers the world actually uses in much of its day to day affairs.
Also signed finite decimals are perhaps the simplest example of an integral
domain that is not a field, and is not simply the integers themselves.

Chapter Seven presents the system of real numbers, considered as infi-
nite decimals. After all, this is how one generally ‘explains’ real numbers to
a beginning mathematics student. But it turns out that this naive notion
can actually be made the basis of a rigorous development, and in a rela-
tively simple fashion. We carry things through a proof that square roots
exist. In this chapter we need some more mathematical machinery, beyond
what earlier chapters relied on. Specifically we need infinite sequences. We
describe these informally, and in terms of functions. Once again, a formal
treatment will be obvious if one is familiar with axiomatic set theory.

Chapter Eight introduces signed numbers. Since signed numbers could
have been introduced at any of several points, this chapter has been written
so that it could follow the one on whole numbers, or on rationals, or on reals.
A certain amount of algebra, integral domains and fields, is introduced as a
convenient means of organizing the presentation. We conclude with a proof
that the signed real numbers constitute a complete ordered field.

We do not present complex numbers. One must stop somewhere, and
we have chosen to stop while we still have an ordered field to work in. If
we went on to complex numbers, we can think of no good reason for not
going on to quaternions and octonians, and the present book is long enough
already.
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1

Background
This memoir can be understood by any one possessing what is

usually called good common sense. . .. But I feel conscious that many
a reader will scarcely recognise in the shadowy forms which I bring
before him his numbers which all his life long have accompanied him
as faithful and familiar friends; he will. . .become impatient at being
compelled to follow out proofs for truths which to his supposed inner
consciousness seem at once evident and certain.

—The Nature and Meaning of Numbers,
in Essays on the Theory of Numbers,

Richard Dedekind, 1888

Dedekind remarks in his preface that many will not recognize
their old friends the natural numbers in the shadowy shapes which
he introduces to them. In this, it seems to me, the supposed persons
are in the right–in other words, I am one among them.

—Principles of Mathematics,
Bertrand Russell, 1903

1.1 What we intend to study

We intend to study the number systems used in mathematics and in ev-
eryday life. Specifically, we will study the counting numbers (1,2,3,4,. . . );
the whole numbers (counting numbers with 0); the rational numbers (rep-
resented by fractions); incidentally the finite decimals; the real numbers
(as represented by infinite decimals); and the signed real numbers. Our
primary concern will be the logical structure of the number systems: how
the commonly accepted facts about numbers can be justified.

1.2 The axiomatic method

“It was easier to know it than to explain why I know it. If you
were asked to prove that two and two made four, you might find
some difficulty, and yet you are quite sure of the fact.”

—said by Sherlock Holmes,
in A Study in Scarlet, A. Conan Doyle
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The system of counting numbers is a rich and intricate mathematical
structure. How can we go about investigating it? One natural approach is
to think of the number system as relating somehow to the way we see the
world around us (adding corresponds to putting collections together, for
example) and then rely on our experience and intuition of the world. This
is historically the way the counting number system came to be invented,
and it is the way it is taught to children. But there are two fundamental
difficulties with this approach, one concerned with our experience, one with
our intuition.

First, there is an infinity of counting numbers, but any person’s experi-
ence of the world is a limited one: we are finite creatures. How do we know
that something we have never experienced before will behave in a relatively
familiar fashion?

The second difficulty is with the notion of intuition, what we ‘feel to
be true.’ It is simply that different people have different intuitions, be-
cause different people have had different experiences. Let us consider some
examples to illustrate this point.

If one has a list of counting numbers to add, will it matter in what order
we add them? Will adding from top down, or from bottom up produce the
same result? It will, and for most of us it is so much a part of our personal
intuition that it never occurs to us to think about it; we take it as a matter
of course. Yet it may not be at all obvious to a child learning how to add.

Call a counting number prime if it is not 1, and no counting numbers
exactly divide it except 1 and itself. Examples are 2,3,5,7,11 and 13. Is
the collection of primes finite or infinite? Most people probably have not
considered the problem, and so have little real feeling about the answer.
But, a very convincing argument can be given that the collection of primes
is infinite. People who are familiar with this argument sooner or later in-
corporate the result into their subconscious, and from then on it influences
their intuitive thinking about all mathematical questions.

Let us say two primes are paired if they differ by 2. Examples are 3 and
5; 5 and 7; 11 and 13. Is the collection of paired primes finite or infinite?
Here even those who have seriously considered the question have no real
conviction about the answer. No one’s intuition extends so far—yet. (By
the way, one test for real intuition or insight is: can you convince others
that you are right? Simple guessing is not enough.)

Intuitions differ. Experience is limited. How is certainty possible? Well,
it isn’t, but at least one can narrow down the region of uncertainty. Let us
consider a not entirely frivolous example.

Suppose someone asked you: “Convince me that 2 + 2 is 4.” Possibly
you would do so by saying what 2 means, what 4 means, and what +
means, no easy thing to do properly. But instead you might argue as follows.
“According to the way I use the notions,

1. 4 is the next number after 3, so 4 is 3 + 1.
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2. Similarly 3 is 2 + 1;

3. 2 is 1 + 1;

4. and furthermore if I add three numbers, it doesn’t matter which two
I add first, or, in symbols, x+ (y + z) = (x+ y) + z.”

Then you might say, “I don’t know what you mean by 2 or the other notions,
but whatever you mean by them, do you accept 1) – 4) as true? Because
if you do, I can argue that 2 + 2 is 4 as follows. By 3), 2 is 1 + 1, so 2 + 2
is 2 + (1 + 1). Then by 4), this is the same as (2 + 1) + 1. But by 2) this is
the same as 3 + 1, and by 1) this is just 4.”

Thus, it doesn’t matter what a person means or thinks he means by
1,2,3,4 and +; if he accepts 1) – 4), he can be convinced that 2 + 2 is 4 by
simple reasoning.

Now let us carry these ideas to their extreme. Suppose, once and for
all, we get together and write down some statements about the counting
numbers that we are all willing to accept. Our reasons for accepting them
may vary from person to person. But then, after that, we refuse to rely
on anything but those basic statements; we deduce things from these basic
facts just as above we deduced that 2 + 2 is 4 from 1) – 4). Then any
uncertainty that might exist about whether the ‘laws of arithmetic’ are
correct is narrowed to the question of the correctness of our basic facts,
they are all we need take on faith.

These basic facts, whose truth is simply acepted, are called axioms. The
procedure of beginning with axioms, and deducing other facts from them by
logic alone is called the axiomatic method. The most famous example of the
axiomatic method is the ancient Greek treatment of geometry. Somewhere
around 300 BC, Euclid attempted to deduce all the basic facts of geometry
from a few simple, obvious axioms. In Chapter Two we will do the same
for the system of counting numbers. Our development is based on that
of Peano (1858–1932) and Dedekind (1831–1916) each of whom came to
essentially this axiomatic development independently.

We have said we will develop the counting numbers using the axiomatic
method. What about the other number systems we will study? Will we
need fresh axioms each time we move on to a different system? Generally
speaking, we will not (there is an exception to this in Chapter Four). We can
define each successive number system in terms of those that came before
it.

Why then don’t we do something similar with the counting numbers?
Define them in terms of something simpler? But then how would we un-
derstand the behavior of that simpler thing? Define it in terms of something
simpler yet? This can not go on forever. We have to start somewhere.

This is an instance of a very general problem. All definitions must be in
terms of something else. But to define this something else, we must make
use of something else again. And so on. Since there are only a finite number
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of words in our language, eventually we will find ourselves reusing one of
the words we are trying to clarify. The conclusion is: we can not define
every concept we use; some must be primitive, understood as best we can,
but not defined.

But if we can’t define all the concepts we will be using, how shall we ever
begin the development of our subject? This brings us back to the axiomatic
method. We simply agree that such and such notions will be primitive; will
be left undefined. Our axioms will involve these notions. The axioms are
not definitions. They are statements that use our primitive notions, and
that we, for whatever reason, accept as true. This is how we begin.

1.3 What we assume

Since all definitions are effected by means of other terms, every
system of definitions which is not circular must start from a certain
apparatus of undefined terms. . . (These) the primitive ideas are ex-
plained by means of descriptions intended to point out to the reader
what is meant; but the explanations do not constitute definitions,
because they really involve the ideas they explain.

Principia Mathematica
Alfred North Whitehead and Bertrand Russell, 1910

The account we just gave of the axiomatic method, and the way we,
and most mathematicians use it, involves a little cheating. Consider, for
instance, the following, which might serve as an axiom: if x is a counting
number then x + 1 is a counting number. We may assume the constant
1, the operation +, and the notion of counting number are the primitive
concepts that this axiom (and presumably it is one of several) is trying to
explicate. These are the things the axiom is ‘about’, and are left undefined.

But, there is still a good deal more to the sentence: the logical terms
‘if. . . then’ and ‘is’. The ‘if. . . then’ construction is one of many related ones
that come up constantly in mathematics; other common ones are and, or,
not, for every and there exists. How do we define these terms? We have
the same problem here that we do with the more ‘mathematical’ concepts
we are trying to explicate. Well, it is possible to treat these logical notions
themselves as primitive and investigate (though not define) them. Doing
so is really a subject in itself, and we recommend you consult a book on
formal (or symbolic or mathematical) logic. We are going to assume you
know how such logical notions behave, and go on from there, though we do
give a brief informal discussion in the next section to make sure we are all
using the terms the same way. Notice, though, that that discussion really
assumes you already understand the terms; for example, we use the word
‘or’ in explaining how we are going to use the word ‘or’. As we said, we will
assume you already understand such words, that you already understand
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the game. The purpose of the next section is just to agree on the ground
rules.

Another term that was used in our candidate for an axiom was ‘is’. This
innocent looking word is really quite a problem. When we said “. . .x is a
counting number. . . ” what we really had in mind was that there was some
collection or set of things, called counting numbers, and x was one of the
things in the collection. Thus we were really assuming that you had some
understanding of the behavior of sets or collections (they mean the same
thing here).

Once again, in a full development, the notion of set itself would need an
axiomatic development too. We do not attempt this. Instead we refer you
to any book on set theory. We are going to assume you know enough about
how sets behave to follow our uses of them, which are fairly simple. For
example, we will be assuming there really is a set of things, called counting
numbers, about which the axioms given in the next chapter are true. And
(key fact) we will assume that if we have constructed some ‘meaningful’
sentence, S, using the logical notions mentioned above, and the mathemat-
ical notions we are developing, then we can talk about the collection of all
counting numbers for which S is true. That is, we assume such a set exists.
Principles like these, and a few other simple ones, are used over and over,
but since this is not a book on set theory, we assume such principles are
already part of your intuition, and we go on from there.

There are a few other mathematical concepts that we make use of, but
do not define. For instance, in the chapter on rational numbers we use
ordered pairs. An ordered pair, informally, is a list of two things in a par-
ticular order, and the order is important. Likewise in the chapter on real
numbers we use infinite sequences. An infinite sequence is an unending list
of things, one of which comes first, one of which comes second, and so on.
We define such things in terms of functions, but we do not really define
functions, just as we do not really define ordered pairs. We assume such
things are parts of the mathematical knowledge you bring to this book.
Strict characterizations of them can be found in books on set theory.

So, logically speaking, before you read this book, you should read a book
on formal logic, and a book on set theory. Pedagogically speaking, however,
if you began your mathematical education with the very first principles you
would never understand why such things were being investigated. You’ve
gotten this far in this book; you might as well finish it.

1.4 How we use the words

In this section we discuss informally how we use certan logical terms. This
is not a formal development. We assume you already understand the words
in a general way, and now we are agreeing on the fine points.

We have already discussed axioms. They are our basic assumptions. The
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truth of an axiom is one of the things we agree to accept, for whatever
reason. Or, alternately, it can simply be adopted as a working hypothesis,
to see what follows, one of the ‘rules of the game’ so to speak.

A theorem is a statement which can be logically deduced from our axioms,
and a logical deduction of it from the axioms is its proof.

A lemma is (generally speaking) a theorem which is of no particular
interest in itself, but which may be used to simplify the proof of some
other theorem. It may be referred to as a lemma for the proof of theorem
such–and–such.

A corollary is a theorem which can be proved in one or two lines using
some theorem just established (or its proof). It may be referred to as a
corollary to theorem such–and–such.

So much for the external terminology. Now for some of the words used
within statements and proofs.

First or. Whenever a mathematician uses the word ‘or’, as in “this or
that”, he means ‘and/or’, that is, “this or that or both”. If he doesn’t want
both, he will say so.

Next, implies. “This implies that” and “if this then that” mean the same
thing. The most common way of proving some statement like “this implies
that” is to temporarily assume ‘this’ and see if, from it, using the axioms,
‘that’ can be deduced. Such a deduction constitutes a proof of “this implies
that.” Another common method of establishing “this implies that” is to
assume one can have ‘this’ but one need not have ‘that’ also, and show a
contradiction follows.

If and only if and is equivalent to have the same meaning. “This is equiv-
alent to that” means “this implies that and that implies this.” To say two
statements are equivalent is to say that from each the other can be deduced.

We assume there are things called sets or collections, and all that matters
about a set is what is in it. If C is a collection of things (for instance, the
collection of even counting numbers) then the notation x ∈ C means x is in
C (in this case, x is an even counting number). The notation x /∈ C means
x is not in C (in this case x is not an even counting number). We will also
use the convention that {x | xis an even counting number} names the set
of even counting numbers. (This is read, “the set of those x such that x is
an even counting number.”)

1.5 The use of variables

We will be using ‘algebraic’ notation, so we should say a little about the
subject. For the time being, let us talk only about the system of counting
numbers, 1,2,3,4,. . . . We all know that if we multiply a number by 2 it is
the same as if we added the number to itself. (Actually, this will be proved
in the next chapter. But we need an example now, so we anticipate.) Thus
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we know the following.
2× 1 = 1 + 1
2× 2 = 2 + 2
2× 3 = 3 + 3

...

Such expressions are called identities.
Earlier we expressed a certain fact in English, namely, “multiplying a

number by 2 is the same as adding the number to itself.” The expression
in quotes sums up all the information contained in the infinitely long list of
identities above. But one problem with stating such a fact in English is this:
the physical appearance of the sentence bears no relation to the physical
appearance of the identities it summarizes. It would be useful if it did
since then the rules for operating with particular numbers might naturally
extend themselves to become rules for operating with general statements
about numbers. Is there another way we can summarize the information,
but so that it looks more like the identities we listed?

Suppose we said this. “Whatever number we put in the blank of the fol-
lowing expression, the result is a true statement: 2× = + .” If we replace
the blank by 2 we get 2 × 2 = 2 + 2. If we replace the blank by 3 we get
2× 3 = 3 + 3, and so on. We now have summed up all the information we
wanted in a single sentence, and we have made use of the form the identi-
ties had. In fact, we can get any of the identities themselves mechanically,
by simply replacing the blank by a number, and we can do this without
actually thinking about the meaning of the words ‘plus’ and ‘times’. Inci-
dentally, this illustrates one of the requirements of a good symbolism: it
eliminates some of the need for thinking.

There is still a diffficulty here which is illustrated by the following. Sup-
pose we say: “If we add a number to 5 and then add a second number to
the result, it is the same as if we had first added the two numbers together
and added the result to 5.” Now, if we try to use the ‘blank system’, we
will need to sort out blanks. We might try something like this. “Whatever
number we put in the blank denoted by and whatever number we put
in the blank denoted by ∼ in the following expression, the result is a true
statement: (5 + ) + ∼ = 5 + ( + ∼).”

Well, we rapidly run out of typographical symbols to denote blanks. It
has become customary to use letters instead for this purpose. So we might
give the information in the first example we discussed above as “Whatever
number we replace x by in the following expression, the result is a true
statement: 2× x = x+ x.” Similarly we might give the information in the
second example as: “If we replace x by any number and y by any number
in the following expression, the result is a true statement: (5 + x) + y =
5 + (x+y).” This sort of thing is often said more shortly: “For any number
x, 2× x = x+ x” or “for any numbers x and y, (5 + x) + y = 5 + (x+ y).”
Expressions like 2 × x = x + x and (5 + x) + y = 5 + (x + y) which are
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asserted to give true results whenever the letters contained in them are
replaced by any numbers we like, are also called identities. Sometimes such
things are given in quite terse form. For example, “2 × x = x + x is true
for all x” or “2 × x = x + x is an identity” or “2 × x = x + x is a law of
numbers”.

So much for identities. There is a related problem of expressing conve-
niently some conditions a number must satisfy to aid us in a search for such
a number. For example, suppose we want a number satisfying the following
condition: “If we multiply the number by itself and then subtract twice
the number, we get 3.” We are not now asserting an identity. We do not
say every number satisfies this condition. We only claim that some number
does, and hope to find one. We can restate the problem as follows: “We
want a number such that if we replace x by it in the following expression
we get a true statement: x× x− 2× x = 3.” x× x− 2× x = 3 is not now
called an identity since we do not assert it is true for any number. Rather,
we assert it is true for some number, and ask for one or more such numbers
to be found. We call x×x−2×x = 3 an equation and call finding a suitable
number, solving the equation.

So the difference between identities and equations is this: we have two
expressions, possibly involving letters, with an equality symbol between
them. If we assert that any replacement of the letters by numbers produces
a true statement, we have an identity. If we only assert some replacement
of letters by numbers will produce a true statement we have an equation.
Sometimes an unqualified expression, like x+ y = x, is given and one must
infer from context whether it is meant as an identity or an equation. This
becomes easier with experience.

The next question is: by what rules can we manipulate algebraic expres-
sions? That is, what are we allowed to do to an equation to try and solve
it, and what can we do to an identity to try and produce a new identity.
The answer is simple. An algebraic expression is an (incomplete) statement
about numbers. If it is an identity, the letters involved could be replaced by
any numbers we like. If it is an equation, there are (we hope) some numbers
by which we can replace the letters. At any rate, the letters behave exactly
as if they were numbers. So what rules may we use? Whatever rules the
numbers themselves obey. And we are devoting much of the rest of this
book to the study of these rules.

Clearly the systems of numbers must obey different rules, or else we
couldn’t tell them apart. But does this mean there is an algebra corre-
sponding to each system, each with its own set of rules? In fact, it does.
If we are dealing with the algebra of the integers, our letters behave as if
they were integers and follow those rules. An identity in this algebra ‘holds
for’ all integers. Likewise, if we are dealing with the algebra of the com-
plex numbers, our identities ‘hold for’ all complex numbers. Indeed, one
reason for having such a system as the complex numbers is that there are
many equations in the algebra of integers (also rationals and reals) which
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have no solutions, but which do when we consider them to be equations in
the algebra of complex numbers. Different number systems have different
algebras, each obeying different rules. High School Algebra is usually the
algebra of real numbers, but it sometimes includes the algebra of complex
numbers. Curiously enough, the algebra of integers is much more difficult.



2

The Counting Numbers
. . . the numerical laws are really not applicable to the external

world: they are not laws of nature. They are, however, applicable to
judgments, which are true of things in the external world: they are
laws of the laws of nature.

—Grundlagen der Arithmetik §87
G. Frege, 1884

2.1 Counting

We wish to study the counting numbers. We intend to use the axiomatic
method. How shall we formulate our axioms? Well, the basic notion of
arithmetic is counting. In this section we informally analyze counting. Later
we will try to capture some of our informal analysis in axioms.

People sometimes object to modern mathematics on the ground that
it doesn’t deal with real, concrete things, but only with highly abstract
and imaginary objects. Let us point out that all mathematics deals with
imaginary objects, even at the level of counting. Suppose we say, “This
apple is red.” Red is a property, and we are saying the apple has the
property. What is it that is red? The apple. But suppose instead we say,
“There are three apples on this table.” Well, three is a property. The word
‘three’ here is used as an adjective just like ‘red’ above. To what does the
property three apply? Not to any of the apples. Certainly not to the table.
It applies to the collection of apples on the table. But the collection of
apples is not a thing in the same sense that an apple is a thing. Such an
object must be considered to be an idealization, a mental construct, not
a physical thing. Even at the level of ‘two apples’, ‘three apples’, we are
dealing with abstract, ideal entities.

Early in childhood, by listening to our parents and others, we formed
an idea of the uses of the word ‘one’. We learned it was correct to say,
“There is one apple on this table,” provided there were apples on the table,
and whenever we removed an apple there were no apples left. Similarly
we learned how to use ‘two’. We could say, “There are two apples on this
table,” provided there were apples on the table and if we removed one of
them, one was left. Likewise we learned the uses of the words ‘three’, ‘four’,
‘five’ and so on.

Now suppose we are given some collection of apples and are asked what
number applies to it. The most straightforward thing to do is this. Pick up
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one of the apples and move it to a new table. This table now has one apple
on it. Pick up another apple and move it to the new table. We now have
two apples on this second table because if we remove the apple we just put
there we have one left, since we had one before we put it there. Now move
another apple to the new table. This makes three on it. We continue this
way, and when we have all the apples moved, we know how many of them
there are.

In fact, we don’t usually move the apples physically. We point to an
apple, in effect saying, “I could move this first”, then to another, “I could
move this next”, and so on. In short, we point to the apples one after
another saying, “one, two, three,” and so on. We count the collection.

In a similar way we can count collections of peaches, or chairs, or what-
ever. We develop an abstract notion of counting, divorced from particular
things. Instead of saying, “one apple, two apples, three apples,” and so on,
we simply say “one, two, three,” and so on. Our notion of how to count is
independent of what we count. Now counting things can be seen as a com-
bination of abstract counting, saying the number names, “one, two, three,”
and so on, and the very concrete act of pointing at one object after another.
The number we name when we point to the last object in the collection is
the number associated with the collection.

The process of counting, then, consists of two parts. The sequence of
counting numbers, ‘one’, ‘two’, ‘three’, etc. And an assignment of these
numbers, in order, to the objects we are counting. The assignment, the
pointing, is a psychological process, and is not part of the subject mat-
ter which concerns us here. We are interested in the abstract sequence of
counting numbers itself.

2.2 The axioms

I regard the whole of arithmetic as a necessary, or at least natural,
consequence of the simplest arithmetic act, that of counting, and
counting itself as nothing else than the successive creation of the
infinite series of positive integers in which each individual is defined
by the one immediately preceding; the simplest act is the passing
from an already-formed individual to the consecutive new one to be
formed. The chain of these numbers forms in itself an exceedingly
useful instrument for the human mind; it presents an inexhaustable
wealth of remarkable laws. . .

—Continuity and Irrational Numbers,
Richard Dedekind, 1872

As for their other assertion, that God’s knowledge cannot com-
prehend things infinite, it only remains for them to affirm, in order
that they may sound the depths of their impiety, that God does not
know all numbers. For it is very certain that they are infinite since,
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no matter at what number you suppose an end to be made, this num-
ber can be, I will not say, increased by the addition of one more, but
however great it be, and however vast be the multitude of which it is
the rational and scientific expression, it can still be not only doubled,
but even multiplied. Moreover, each number is so defined by its own
properties, that no two numbers are equal. They are therefore both
unequal and different from one another; and while they are simply
finite, collectively they are infinite.

—The City of God, §18
St. Augustine

When we count, we say: “one, two, three,” and so on. But ‘two’ is just
the English name for ‘one more than one,’ and ‘three’ is just the English
name for ‘one more than two’ and so on. So, avoiding the complications
of our language, when we count, we essentially are saying: “One, and one
more, and one more than that,” and so on. Then what is necessary that we
may do this? We need the number ‘one’, since the counting process must
begin somewhere; its name is not important, all that matters is that we
start with it. And we need the notion of ‘and one more than that,’ in short,
let us say ‘successor’.

As is customary, we use the symbol ‘1’ for the number we start with
when we count. If we have, somehow, counted up to a number, say x, we
need some way to denote the next number after x, one more than x, the
successor of x. Let us denote it by x+. We take these as our basic notions:
the number 1, and the passage from x to x+. So, our first two axioms for
the counting numbers are:

Axiom 1 1 is a counting number.

Axiom 2 If x is a counting number, so is x+.

Now, in counting we start with 1. We would like to have an axiom that
reflects this. Well, if we could start counting somewhere other than 1, and
count our way to 1, 1 would have to be the next number after some other
number. If we say it is not, in effect we have said that if we want 1 to be
in our counting sequence, we must begin with it.

Axiom 3 For any counting number x, x+ 6= 1.

Next we need an axiom which will guarantee that, as we continue to
count, we keep getting different numbers. At no stage do we repeat an ear-
lier number. Counting does not proceed like this: 1,2,3,4,5,6,7,3,4,5,6,. . . .
Notice that in this example, 3 comes after both 2 and 7. That is, different
numbers have the same successor. We don’t want this to happen.

Axiom 4 If x and y are counting numbers and x 6= y, then x+ 6= y+.
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That is, different numbers have different successors. This axiom is logi-
cally equivalent to the following which is often more convenient.

Axiom 4’ If x and y are counting numbers and x+ = y+ then x = y.

Before we go on with our axioms, let us show that as far as we have gone
they do as we wanted them to do. Let us show that they guarantee we keep
getting new numbers as we count.

a) By Axiom 1, 1 is a counting number.
b) By Axiom 2, since 1 is a counting number, so is 1+. And by Axiom 3,

1+ 6= 1, so 1 and 1+ are different.
c) By Axiom 2, since 1+ is a counting number, so is (1+)+. By Axiom

3, (1+)+ 6= 1. Also we showed in b) that 1+ 6= 1. Then by Axiom 4,
(1+)+ 6= 1+. So 1, 1+ and (1+)+ are all different.

d) This continues. We leave the next step to you.

We come now to the final and most complicated of our axioms. Our
intention is to capture, in our axioms, the notion of counting. We have
listed several basic facts, but we have not yet fully characterized the notion.
As we have just seen, so far we can derive that 1, 1+, (1+)+, ((1+)+)+,
and so on, are all counting numbers (and are all distinct). We still need to
state, somehow, that these are the only things that are counting numbers.
We need to say that a collection of counting numbers which includes 1, 1+,
(1+)+, ((1+)+)+, and so on, actually has every counting number in it; it is
exactly the collection of counting numbers.

The problem here is that we can’t say directly that a collection of count-
ing numbers includes all of 1, 1+, (1+)+, ((1+)+)+, etc., without either
making infinitely many statements, or using the very concept of counting
number we are trying to describe. The ‘etc.’ above conceals infinitely many
statements. A paraphrase like “1 followed by any number of + symbols”
makes use of the notion of number. We must find some indirect way of
saying it.

Call a collection of counting numbers closed under successor if, whatever
number it includes, it also includes the successor of that number. That is,
whatever number n is, if n is in the collection, so is n+. Now, suppose we
have a collection of counting numbers which

a) includes 1,
b) is closed under successor.

Then it must actually include all of 1, 1+, (1+)+, etc. For, by a), it includes
1. By b), since it includes 1, it includes 1+. By b) again, since it includes
1+, it includes (1+)+. And so on. We now have the paraphrase we wanted:
we can say a collection includes all of 1, 1+, (1+)+, etc., by simply saying
it includes 1 and is closed under successor.

Axiom 5 Any collection of counting numbers which includes 1 and is
closed under successor is exactly the collection of counting numbers.
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The role of axiom 5 may, perhaps, be clarified using the following notion.
Call a collection of counting numbers inductive if

a) it includes 1
b) it is closed under successor.

Then axioms 1 and 2 together say the collection of all counting numbers is
inductive. Axiom 5 says it is the only inductive collection.

Axiom 5, often called the induction axiom, completes our list of axioms.
We have spent much time in discussing their background. We have not
tried to prove them. We have argued for their plausibility, that is all. Now
we adopt them officially. For the rest of the book, they are ‘rules of the
game.’

We list the axioms again here for convenience.

Axiom 1 1 is a counting number.

Axiom 2 If x is a counting number, so is x+.

Axiom 3 For any counting number x, x+ 6= 1.

Axiom 4 If x and y are counting numbers and x 6= y, then x+ 6= y+.

Equivalently

Axiom 4’ If x and y are counting numbers and x+ = y+ then x = y.

Axiom 5 Any collection of counting numbers which includes 1 and is
closed under successor (that is, which is inductive) is exactly the collec-
tion of counting numbers.

Exercises

Exercise 2.2.1 Prove that Axiom 4 and Axiom 4’ are equivalent.

Exercise 2.2.2 Show ((1+)+)+ is a counting number, and is different than
any of 1, 1+, and (1+)+.

2.3 A few lemmas

In this section we use our axioms and prove one or two lemmas. We will
need them later on, but what we are primarily interested in is giving some
examples of how things are proved.

To make reading easier, from now on we may write x++ for (x+)+, we
may write x+++ for ((x+)+)+, and so on.

Lemma 2.3.1 For every counting number x, x+ 6= x.

Remark In words, this says no counting number can be its own successor.
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The idea of the proof is this. We form a certain collection of counting
numbers, call it C, as follows. Put a number x in C if x+ 6= x. Then (this
is the heart of the argument) we show C is inductive. Then, by Axiom 5,
C must be exactly the collection of counting numbers. Now, x is in C just
if x+ 6= x. But every counting number turns out to be in C. So for every
counting number x, x+ 6= x. Now the proof itself.

Proof Let C consist of those counting numbers x such that x+ 6= x. By
axiom 3, 1+ 6= 1, so 1 ∈ C (recall, this notation means 1 is a member of
C).

Next we show C is closed under successor. Well, suppose n ∈ C; we must
show that also n+ ∈ C. Now if n ∈ C, it means n+ 6= n. Then by axiom
4 (n+)+ 6= n+. But this says x+ 6= x if x is n+. So n+ ∈ C. C is closed
under successor.

Hence C is inductive. By Axiom 5, C is the collection of counting num-
bers. So for every counting number x, x+ 6= x.

This proof is a typical example of the use of Axiom 5. Proofs using this
axiom are called proofs by induction. Many of the proofs in this chapter
will be by induction.

Lemma 2.3.2 For every counting number x, either x = 1 or else, for some
y, x = y+.

Remark In words this says every counting number either is 1 or is the
successor of something.

Proof Let C consist of the number 1, together with all the counting num-
bers x which are the successors of something, that is, for which there is
some y with x = y+.

By definition, 1 ∈ C.
Next we show C is closed under successor. Suppose n ∈ C, we show that

then n+ ∈ C. Well, n+ is the successor of something, namely n. So by
definition n+ ∈ C.
C is inductive, so by Axiom 5 every counting number is in C and we are

done.

Exercises

Exercise 2.3.1 Prove: for every counting number x, x++ 6= x.

Exercise 2.3.2 Call x a predecessor of y if x+ = y. Show no counting
number can have two predecessors.

Exercise 2.3.3 Show, for every counting number x, either x = 1, or x =
1+, or for some y, x = y++.
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2.4 Addition

In order to make reading easier, we introduce some official abbreviations.

Definition 2.4.1 We use

2 for 1+

3 for 2+

4 for 3+

5 for 4+

6 for 5+

7 for 6+

8 for 7+

9 for 8+

Our intention in this section is to define addition. Before we give our
official definition we discuss its informal motivation. This is to make it
seem reasonable. But, of course, in proofs we may only use the definition
itself, not the ideas that led to it.

We might think of 4 + 3 as a set of instructions to us, telling us to
start with the number 4 and count off the next 3 numbers. More generally,
x + y tells us to start at x and count off the next y numbers. In fact,
this is pretty much the way children add before they have learned more
complicated techniques. But, as it happens, we choose not to make this
our official definition of addition. The reasons why are interesting.

There is a difference between counting in the abstract and counting
things. By counting various collections of things many times, the human
race gradually abstracted the notion of counting. It went from being able to
count apples: “One apple, two apples, three apples,. . .” to counting with-
out objects: “One, two, three,. . .”. As long as we could only count apples,
we couldn’t count peaches. Once having developed an abstract notion of
counting, we could count anything. (Some languages, in fact, have different
sets of counting words for different kinds of things. The notion of counting
has not been abstracted out yet. There are traces of a similar development
in English: we speak of a flock of sheep, but not of a flock of apples, for
example.)

Our axioms are intended to capture the abstract notion of counting. We
have only listed properties of the counting numbers, and nowhere have we
discussed the machinery necessary to count things. To count things, we need
not only the abstract sequence of counting numbers, but also the ability to
assign numbers to the things we are counting.

Now, consider again our informal notion of addition. 4+3 tells us to start
at 4 and count off 3 more numbers. To make this our official definition, we
would have to be able to count some collection of numbers. Specifically,
to add 4 and 3, we would need machinery to ‘count off’ 5,6,7, and assign
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them the numbers 1,2,3. But so far we have introduced no machinery for
this purpose.

It is quite possible to develop the machinery necessary to ‘count off’
numbers. But it is complicated, and rather beside the point of our develop-
ment (though see the optional §5). What we do instead is use our informal
notions about adding to work out a characterization of + that does not
involve counting things. Then we make this our official definition.

Suppose, using our informal notion of adding, we actually try to compute
4 + 3. We start at 4 and count off the next 3 numbers. Suppose also we
had somehow computed 4 + 2. Then we could make use of that to simplify
our computation of 4 + 3. Now, 4 + 2 tells us to start at 4 and count off
the next 2 numbers. If we do this, then count off yet another number, the
result will be counting off 3 numbers after 4. But we are supposing we have
already computed 4 + 2. Counting off yet one more number is easy, we just
get (4 + 2)+. To compute 4 + 3, first compute 4 + 2, then count off one
more number.

Similarly, we could easily compute 4 + 2, if we already knew what the
value of 4 + 1 was. 4 + 1 tells us to start at 4 and count off 1 more number.
Say we have done this. If we then count off yet another number, we have
in effect started at 4 and counted off 2 more numbers. But this can be
symbolized as (4 + 1)+.

Finally, it is easy to say what 4 + 1 is. To compute it we should start at
4 and count off 1 more number. But this is just 4+. That is, 4 + 1 = 4+.

Let us state the above in more general terms. If x and y are counting
numbers, x+ y tells us to start at x and count off y more numbers. Then
x + 1 must be x+. But also, if x + y means we have counted off y more
than x, x + y+ means we have counted off 1 more than we did when we
computed x + y. Thus x + y+ must be (x + y)+. It would seem addition
must have the following properties.

a) x+ 1 = x+.
b) x+ y+ = (x+ y)+.

Now it turns out that these two properties of addition are, in their turn,
sufficient to calculate sums. By way of illustration, let us use them to show
2 + 2 = 4.

By definition of 2, 2 + 2 = 2 + 1+. By b), 2 + 1+ = (2 + 1)+, so 2 + 2 =
(2 + 1)+ = (2+)+. Finally, by definition, (2+)+ = 3+ = 4.

With this as background, we give our official characterization.

Definition 2.4.2 + is that operation on the counting numbers which
meets the conditions

x+ 1 = x+

x+ y+ = (x+ y)+.
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Exercises

Exercise 2.4.1 Show 6 = 2++++.

Exercise 2.4.2 Use Definition 2.4.2 and show:

1. 5 + 3 = 8,

2. 3 + 5 = 8.

2.5 Implicit and explicit definitions

The work in this section is designed to fill a serious gap in our definition
of addition. It is not essential for your understanding of what follows, and
may be omitted.

A definition of a term tells us how to get along without it. For example,
by ‘aardvark’ we mean ‘blah, blah, blah.’ Then whenever we use the word
‘aardvark’, we could substitute ‘blah, blah, blah’ instead. Doing so would
not change the correctness of what we say, but it would avoid the use of the
term ‘aardvark’ entirely. The role the term ‘aardvark’ plays is merely one
of convenience: it replaces a longer phrase. For a mathematical example
consider the sequence of definitions at the beginning of the last section: 2
is 1+, 3 is 2+, etc. These introduce the symbol ‘3’ and tell what it means,
that is, how to avoid using it, how to translate it away.

Sometimes definitions are called explicit definitions to emphasize this.
An explicit definition tells precisely how to replace all occurrences of the
term being defined by phrases involving other terms altogether.

But the definition of + in the last section is not of this sort. It does not
tell us what the operation + is in other terms, rather the definition of +
involves + again. [x+ y+ = (x+ y)+]. It is not an explicit definition. Some
would perhaps argue that it is no definition at all.

An implicit definition of a term is an indirect characterization. For ex-
ample. “The murderer is John Smith,” is an explicit characterization. “The
murderer lives on 4th or 5th Avenue, on the 17th floor, and the last three
digits of his or her telephone number are 762,” may or may not be an im-
plicit characterization. If it turns out that only one person meets all the
conditions, it is an implicit characterization, otherwise it isn’t. We can’t
tell if it is an implicit characterization of someone by simply looking at it.
More must be done.

Before we consider mathematical examples we need to introduce some
more machinery. We need the notion of a function. Such an object can be
defined and developed rigorously in set theory, but a less formal approach
is sufficient for our purposes.

Let C be some collection of counting numbers. A rule which assigns a
number to each member of C is a function with domain C. For example,
suppose C consists of 1,2 and 3, and the rule is:
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assign to 1 the number 7
assign to 2 the number 5
assign to 3 the number 2.

This constitutes a function with domain C.
When we talk about functions, we give them names. Generally we call a

function f or g or F or G or something similar. Suppose we call the function
in the example above f . Then we might say the domain of f consists of 1,
2 and 3, and f assigns to 1 the number 7, and so on. This is customarily
abbreviated as follows. One writes f(x) for the number f assigns to x.
Then, for our example, f(1) = 7, f(2) = 5 and f(3) = 2.

The domain of a function need not be finite. It can, for example, be the
entire collection of counting numbers. In this case the rule will have to
be specified by some means other than writing out each instance, as we
did in the example above. We might say something like this: let g be the
function whose domain is the entire collection of counting numbers, given
by g(x) = x++. Here the rule is specified by a formula telling us how to
compute what g assigns to any given number x.

These examples should suffice for the understanding of what follows.
Now let us consider some mathematical examples of implicit and explicit
definitions. In these, we assume temporarily that + is available, and that
it satisfies the conditions given in Section 2.4.

Suppose I say that I am thinking of a function f whose domain is all
counting numbers, meeting the condition:

a) f(n+) = [f(n)]+.

So f(4) = [f(3)]+, f(5) = [f(4)]+, etc. Does this implicitly characterize
a unique function? Well, f(x) = 3 + x meets the condition since, for this
choice of f ,

f(n+) = 3 + n+

= [3 + n]+ (by the properties of +)
= [f(n)]+

But by a similar argument, f(x) = 4 + x and f(x) = 5 + x also meet the
condition. I have not implicitly characterized a function; many meet the
condition.

Suppose I say that I am thinking of a function f meeting the conditions:

a) f(n+) = [f(n)]+

b) f(1) = 3
c) f(2) = 5.
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Does this implicitly characterize a function? Well

f(2) = f(1+) (definition of 2)
= [f(1)]+ (by a)
= [3]+ (by b)
= 4 (definition of 4)

But by c), f(2) should be 5. I have not implicitly characterized a function;
none meet the conditions.

Suppose I say that I am thinking of a function f meeting the conditions:

a) f(n+) = [f(n)]+

b) f(1) = 3.

It turns out that this time I have succeeded in implicitly characterizing a
function. It is the function explicitly characterized by the formula f(x) =
2 + x. To demonstrate that this is so we give the following two arguments.

I. The function f(x) = 2 + x does meet conditions a) and b).

Proof If f(x) = 2 + x then

f(1) = 2 + 1
= 2+ (by properties of +)
= 3

so condition b) is satisfied.
Further, if f(x) = 2 + x, then

f(n+) = 2 + n+

= [2 + n]+ (by properties of +)
= [f(n)]+

so condition a) is satisified.

II. There can’t be two different functions meeting conditions a) and b).

Proof Suppose f and f ′ both meet conditions a) and b). We show f and
f ′ are really the same function by showing they assign the same value to
each counting number.

Let C be the collection of counting numbers x for which f(x) = f ′(x).
Since f and f ′ both meet condition b), f(1) = 3 and f ′(1) = 3, so

f(1) = f ′(1). Thus 1 ∈ C.
Suppose n ∈ C. This means f(n) = f ′(n). Taking successors on both

sides, [f(n)]+ = [f ′(n)]+. Since both f and f ′ meet condition a), this says
f(n+) = f ′(n+), so n+ ∈ C. Thus C is closed under successor.

By axiom 5, every counting number is in C, so f and f ′ agree on every
counting number.
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We thus have both implicit and explicit definitions of the same function.

Implicit f is that function meeting the conditions
a) f(n+) = [f(n)]+

b) f(1) = 3

Explicit f(x) = 2 + x.

This example is typical. The only way we can be sure a candidate for
an implicit definition really defines something is by giving some explicit
definition and proving it equivalent. An implicit definition may often be
more convenient to work with. For example, the implicit version above
does not require us to know what addition means. But unless we’ve shown
it to be equivalent to some explicit definition we don’t really know it is safe
to use. We don’t know it defines anything.

From now on we no longer assume we know about +. That is, we drop
the temporary assumption we made so that we could present some math-
ematical examples.

Now, the definition of + given in Section 2.4 is an implicit one. What we
do in the rest of this section is produce an equivalent explicit definition of
+. Having done this once and for all, we need never use the explicit version
again; we know the implicit characterization is safe.

Though we are, at the moment, concerned with addition, the same work
will allow us to prove a general result that will also apply to multiplication
and exponentiation when we come to them. So we prove a general theorem
about when implicit definitions can be turned into explicit ones. Then we
apply it to addition. Please understand, our work here is of a somewhat
different character than elsewhere in the chapter. We here make use of
intuitive ideas about functions, for example. We need much more than
just the counting number axioms. Our aim now is to show the addition
conditions of Section 2.4 are meaningful. But it is the conditions themselves
that are used elsewhere in the chapter.

Essentially we generalize the example discussed above. Now, the case in
which we successfully characterized a function was the one in which we said
what it was to be at 1, f(1) = 3, and how to calculate what it does at n+ if
we knew what it did at n, f(n+) = [f(n)]+. For our generalization we will
suppose we are told what f is to be at 1, f(1) = c and we are given some
rule, call it G, telling us how to calculate what f does at n+ if we knew
what f did at n,f(n+) = G(f(n)). For example, above the rule G was: take
successor. That is, G(x) = x+. Part of the point of what follows is that
any rule will do as well. Such conditions always do characterize exactly one
function.

Theorem 2.5.1 (on Definition) Let c be some counting number. Let G
be some function whose domain is the entire set of counting numbers. There
is exactly one function F whose domain is all counting numbers meeting
the conditions f(1) = c and f(n+) = G(f(n)).
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Essentially what we will do is produce an explicit definition of a function
f and show it is the only function that meets our conditions. But first,
some background work.

Definition 2.5.2 x is a predecessor of y if x+ = y.

Thus 3 is a predecessor of 4, for example. Axiom 3 says 1 has no prede-
cessor. By Lemma 2.3.2 and Exercise 2.3.2, every counting number other
than 1 has exactly one precessor.

Definition 2.5.3 Let C be a non-empty collection of counting numbers.
We say C is closed under predecessor if, whatever number it includes, other
than 1, it includes the predecessor of that number as well.

Note that then the collection consisting of just the number 1 is closed
under predecessor.

Definition 2.5.4 We say a function g is initial if its domain is closed
under predecessor.

Then if g is initial, 1 is in its domain by Exercise 2.5.1. Also if n+ is in its
domain, so is n.

Definition 2.5.5 Let G be a function whose domain is the entire collection
of counting numbers. We say a function g is a G-function if g is initial and
also, for each n, if n+ is in the domain of g, then g(n+) = G(g(n)). We say
g is a G-function starting at c if g is a G-function and also g(1) = c.

For example, suppose G(x) = x+. Let g have a domain consisting of 1, 2
and 3, and be given by

g(1) = 3
g(2) = 4
g(3) = 5.

Then g is a G-function starting at 3. (Make sure you see why.)

Lemma 2.5.6 Suppose g and h are both G-functions starting at c. If x is
in the domain of both g and h, then g(x) = h(x).

Proof Let C be the following collection of counting numbers: put x in C
if a) x is not in the domain of g or b) x is not in the domain of h or c) x
is in both domains and g(x) = h(x).

If we can show every counting number is in C, it will establish the lemma.
Of course, we do this by showing C is inductive.

By Exercise 2.5.1, 1 is in the domains of both g and h. Since both are
G-functions starting at c, g(1) = h(1) so condition c) is met and 1 ∈ C.
Next, suppose n ∈ C. If n+ is not in the domain of either g or h, it is
automatically in C. Now suppose n+ is in both domains. Then n is also in
both domains (since g and h are initial). But n ∈ C and for n neither a)



2. The Counting Numbers 23

nor b) holds, so it must be that g(n) = h(n). But then G(g(n)) = G(h(n)),
on taking G of both sides. But g and h are both G-functions, so this gives
us g(n+) = h(n+). Then n+ ∈ C.
C is inductive. Now Axiom 5 completes the proof.

Lemma 2.5.7 Let c and G be fixed. For each counting number x there is
some G-function starting at c that has x in its domain.

Proof Let C be the following collection of counting numbers. Put x in
C if x is in the domain of some G-function starting at c. We show C is
inductive, which, by Axiom 4, is enough to establish the lemma.

Let g be the function with only 1 in its domain, and given by g(1) = c.
Trivially g is a G-function starting at c. Hence 1 ∈ C.

Next we show C is closed under successor. Suppose n ∈ C. Then there
is some G-function starting at c, with n in its domain; call it g. We have
two cases.

case A) n+ happens to be in the domain of g too. Then automatically
n+ ∈ C.

case B) n+ is not in the domain of g. Then we define a new function h
as follows. The domain of h is to be the domain of g, together with the
number n+. On the domain of g, h is to be the same as g. And on n+ we
set h(n+) = G(g(n)). We claim h is a G-function starting at c too. Since it
obviously has n+ in its domain, then in case B) also we will have n+ ∈ C.
Thus C is closed under successor, and the proof will be finished.

Thus we must show h is a G-function starting at c. We recall that we
are in case B), and so n is a counting number in the domain of g, but n+

is not (though n+ is in the domain of h).
First we show the domain of h is closed under predecessor. Let w be in

the domain of h, and suppose w is not 1, so it has a predecessor. We must
show its predecessor is also in the domain of h. We have two cases.

First, suppose w is in the domain of g. But g itself is a G-function, hence
initial. So the predecessor of w is also in the domain of g, and hence in the
domain of h.

Second, suppose w is not in the domain of g. But w is in the domain of
h. So w must be n+. Then the predecessor of w is n which we know is in
the domain of g, and hence in the domain of h.

Thus the domain of h is closed under predecessor. This means h is initial.
Next we show h is a G-function. To do this we suppose k+ is in the

domain of h, and we show h(k+) = G(h(k)). And to do this we again
consider two cases.

First, suppose k = n. Then k+ = n+ so

h(k+) = h(n+)
= G(g(n)) (def of h)
= G(h(n)) (def of h)
= G(h(k)).
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Second, suppose k 6= n. Then k+ 6= n+ by Axiom 4. Since the domains of
g and h differ only on n+ then since k+ is in the domain of h and k+ 6= n+,
k+ must be in the domain of g. Since k+ is in the domain of g, so is k, but
n+ isn’t. So k 6= n+.

Now k+ is in the domain of g, and g is a G-function, so g(k+) = G(g(k)).
Also k+ 6= n+ and g and h differ only on n+, so g(k+) = h(k+). Similarly
since k 6= n+, g(k) = h(k). Combining these three equations gives h(k+) =
G(h(k)). In either case, h(k+) = G(h(k)). So h is a G-function.

Finally we show h is a G-function starting at c. But this is easy. 1 is in
the domains of both g and h, since they are both initial. And g and h agree
on the domain of g, hence g(1) = h(1) = c since g is a G-function starting
at c.

We have shown h is a G-function starting at c, as promised. This com-
pletes case B) and concludes the proof.

The two lemmas above show that, for a given c and G, each counting
number x is in the domain of some G-function starting at c, and if x is in the
domains of more than one, they agree on x. We are now ready for our main
argument. What follows is the proof of the Theorem on Definition 2.5.1.

Proof Let c be a given counting number, and let G be some given function
whose domain is the entire set of counting numbers. We produce a unique
function f , defined on all counting numbers, and meeting the conditions
f(1) = c and f(n+) = G(f(n)).

Well define the function f as follows. For any counting number x, f(x)
is to be the same as g(x) where g is any G-function starting at c that has
x in its domain. The Lemmas above tell us that this does indeed explicitly
define a function whose domain is the collection of all counting numbers.
Now we show it satisfies our conditions, and is the only function that does
so.

I. The function f , just defined, meets the given conditions.
Proof of I.

a) By the definition of f , f(1) is g(1) where g is any G-function starting
at c having 1 in its domain. But by definition of G-function starting at c
we must have g(1) = c. Hence f(1) = c.

b) By the definition of f , f(n+) is g(n+) where g is any G-function
starting at c having n+ in its domain. Choose such a g. Now if n+ is in the
domain of g, so is n, since g is initial, and hence by definition of f again,
f(n) is g(n). Also by definition of G-function, g(n+) = G(g(n)). It follows
that f(n+) = G(f(n)).

Thus f meets the given conditions.
II. There can’t be two functions meeting the given conditions.
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Proof of II. Suppose f and f ′ both meet the conditions. That is, suppose

f(1) = c
f(n+) = G(f(n))
f ′(1) = c

f ′(n+) = G(f ′(n)).

Form a collection C as follows: put x ∈ C if f(x) = f ′(x). We show every
counting number is in C and hence f and f ′ are identical.

Well, f(1) = c and f ′(1) = c so f(1) = f ′(1). Hence 1 ∈ C.
Suppose n ∈ C. Then f(n) = f ′(n). Hence G(f(n)) = G(f ′(n)) and thus

f(n+) = f ′(n+). That is, n+ ∈ C.
C is inductive, and we are done.

Now, finally, let us return to the original issue. The definition of addition
given in Section 2.4 was not an explicit one. Let us show it is equivalent to
an explicit one, and then we are on safe grounds using it.

In Theorem 2.5.1, take G to be the successor function, G(x) = x+. Then
the theorem tells us, for each choice of c there is a unique function meeting
the conditions

f(1) = c+ (note well)
f(n+) = [f(n)]+.

Let us denote this function by fc. Thus, for each choice of c, fc is that
unique function such that

fc(1) = c+

fc(n+) = [fc(n)]+.

Explicit Definition of Addition x+ y is the number fx(y).

Exercises

Exercise 2.5.1 Show every collection that is closed under predecessor con-
tains 1. Hint: suppose C is closed under predecessor but doesn’t contain
1. Show, by induction, that for each counting number x, x /∈ C, so C is
empty.

Exercise 2.5.2 Show that the operation +, as explicitly defined, meets
the conditions x+ 1 = x+ and x+ y+ = (x+ y)+.

Exercise 2.5.3 Show that if the two operations + and ⊕ both meet the
addition conditions, then they are the same operation. That is, assume

x+ 1 = x+

x⊕ 1 = x+

x+ y+ = (x+ y)+

x⊕ y+ = (x⊕ y)+.

Show: for all x and y, x + y = x ⊕ y. Hint: hold x fixed, do an induction
on y.
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2.6 Basic properties of addition

...the characteristic of erroneous theories is the impossibility of
ever foreseeing new facts; whenever such a fact is discovered, those
theories have to be grafted with further hypotheses in order to ac-
count for them. True theories, on the contrary. . . are characterized
by being able to predict new facts, a natural consequence of those
already known. In a word, the characteristic of a true theory is its
fruitfulness.

Louis Pasteur, quoted in
The Life Of Pasteur,

by Rene Vallery-Radat,
translated by Mrs. R. L. Devonshire

page 243.

We recall our definition of addition. It is that operation meeting the
conditions

a) x+ 1 = x+

b) x+ y+ = (x+ y)+

Freed from algebraic notation, condition a) says adding 1 is the same
as taking successor. Thus, for example, (4 + 3) + 1 = (4 + 3)+. Similarly,
condition b) says that in adding two terms, a successor in the second can
be moved outside, and vice versa. For example, 3+(4+5)+ = [3+(4+5)]+.
Here the two terms are 3 and 4+5. Now we use our definition and establish
some basic results about adding.

Theorem 2.6.1 (Associative law for addition)
For any counting numbers, x, y and z, x+ (y + z) = (x+ y) + z.

Remark This says that when we add three numbers, it doesn’t matter
which two we choose to add first. We may associate them as we please.

Proof Let b and c be any fixed, but arbitrary, counting numbers. Having
chosen b and c, we create a collection C of counting numbers as follows: put
z in C if b+ (c+ z) = (b+ c) + z. We begin by showing C is inductive. In
doing so we indicate which part of the definition of addition we are using
at each step.

b+ (c+ 1) = b+ c+ (part a)
= (b+ c)+ (part b)
= (b+ c) + 1 (part a)

This says 1 ∈ C.
Next, suppose n ∈ C. We show n+ ∈ C. Well,

b+ (c+ n+) = b+ (c+ n)+ (part b)
= [b+ (c+ n)]+. (part b)
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But n ∈ C. This means

b+ (c+ n) = (b+ c) + n

and this gives us

[b+ (c+ n)]+ = [(b+ c) + n]+.

So,
b+ (c+ n+) = [b+ (c+ n)]+

= [(b+ c) + n]+

= (b+ c) + n+ (part b)

and this says n+ ∈ C.
Then C is inductive. By Axiom 5 every counting number is in C. Then

for every z, b+ (c+ z) = (b+ c) + z. But we have shown this independently
of our choice of b and c; they were entirely arbitrary. Hence we have really
shown that for any x, y and z, x+ (y + z) = (x+ y) + z.

What we did in this proof is quite common. In the future we will simply
say something like: fix x and fix y; do an induction on z. This is short for:
choose a value for x and choose a value for y; having done so, we show the
result holds for all z by induction; then since the choice of x and of y was
arbitrary, we in fact have the result for all x and all y, as well as all z.

Lemma 2.6.2 For any counting number x, 1 + x = x+.

Theorem 2.6.3 (Commutativity of addition) For any counting num-
bers x and y, x+ y = y + x.

Proof Fix x; we do an induction on y. Let C consist of those counting
numbers y for which x+ y = y + x.

By definition, x+1 = x+. By Lemma 2.6.2, 1+x = x+. Hence x+1 = 1+x
so 1 ∈ C.

Suppose n ∈ C. This means x + n = n + x. We refer to this fact as ∗
below. Now,

x+ n+ = (x+ n)+ (part b)
= (n+ x)+ (by ∗)
= (n+ x) + 1 (part a)
= n+ (x+ 1) (by Theorem 2.6.1)
= n+ (1 + x) (since x+ 1 = 1 + x)
= (n+ 1) + x (by Theorem 2.6.1)
= n+ + x (part a)

And this says n+ ∈ C.
Hence C is inductive, and the theorem is established.
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We have shown addition of counting numbers is associative and commu-
tative. In everyday life when we add a column of numbers we may, to make
things easier, add them in groups first, then add the results together, or we
may rearrange them in some more convenient way. That we are justified
in doing so follows from the two theorems above. For example, let us show
(3 + 4) + (5 + 6) = [(6 + 4) + 3] + 5. The argument is as follows.

(3 + 4) + (5 + 6) = (4 + 3) + (5 + 6) (commutativity)
= (4 + 3) + (6 + 5) (commutativity)
= [(4 + 3) + 6] + 5 (associativity)
= [6 + (4 + 3)] + 5 (commutativity)
= [(6 + 4) + 3] + 5 (associativity)

Notice that we have never added more than two numbers at a time. The
result of arguments like this, practically, is that we can simply say: add up
the numbers 6, 5, 4 and 3, without specifying the order, because the order
never matters.

Theorem 2.6.4 (Cancellation law for addition)
Let x, y and z be counting numbers. If x+ z = y + z, then x = y.

It is tempting to go from x + z = y + z to x = y by subtracting z from
both sides. We can’t do this because we haven’t defined subtraction yet.
In fact in the next chapter when we do define subtraction, it will turn out
that we need this theorem to make sure our definition makes sense.

Proof Do an induction on z. Let us say z can be cancelled if it is correct
to go from x + z = y + z to x = y. We show every counting number can
be cancelled. Well, let C consist of those counting numbers that can be
cancelled. It is enough to show C is inductive.

First we show 1 ∈ C. Suppose x+1 = y+1. Then x+ = y+, so by Axiom
4’, x = y. Thus 1 can be cancelled; 1 ∈ C.

Next we show C is closed under successor. Suppose n ∈ C, that is, n can
be cancelled. Now suppose x + n+ = y + n+. Then (x + n)+ = (y + n)+.
By Axiom 4’, x + n = y + n. But n can be cancelled, so x = y. Thus we
have cancelled n+ so n+ ∈ C.
C is inductive, and we are done.

Corollary 2.6.5 (Cancellation law for addition)
Let x, y and z be counting numbers. If z + x = z + y then x = y.

Exercises

Exercise 2.6.1 Prove Lemma 2.6.2.

Exercise 2.6.2 Show [(2 + 4) + 6] + 8 = 6 + [4 + (8 + 2)].

Exercise 2.6.3 Show [(2 + 4) + 6] + 8 = (6 + 8) + (2 + 4).
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2.7 Multiplication

Our definition of multiplication will be along the same lines as our definition
of addition, and the general comments we made there apply here too.

Just as addition can be thought of as repeated counting, multiplication
can be thought of as repeated addition. Our informal guide is: to multiply
4 by 3 we write down 3 4’s and add them. But how can we express this
without dragging in machinery to count things? We look for an alternative
definition which will result in 4 ·3 being the result of adding 4, three times,
but won’t make it necessary to count 4’s. We follow the general pattern of
the definition of addition; what can we say about multiplying by 1; what
can we say about multiplying by y+ if we know about multiplying by y. We
may be guided by the informal notion that x · y means add y x’s together.

Well, x · 1 should be the result of adding up a collection of one x, that
is, just x itself. So we want x · 1 = x.

Next, suppose we have computed x · y; that is, we have added y x’s
together. What about x · y+? To compute x · y+ we should add up y+ x’s.
We can do this by adding y x’s, and then adding in one more x. But adding
y x’s is just x · y, and adding one more x gives us x · y + x. So we want
x · y+ = x · y + x.

Definition 2.7.1 Multiplication is that operation on the counting num-
bers meeting the following conditions:

a) x · 1 = x
b) x · y+ = x · y + x.

The rest of this section is only for those who read Section 2.5.
The definition of multiplication above is an implicit one and should be

shown to be equivalent to some explicit definition for security. But this
is quite easy because of the powerful tool we have in the Theorem on
Definition 2.5.1.

Let c be some fixed counting number, and let G be the function given by
G(x) = x + c. Then by Theorem 2.5.1 there is a unique function meeting
the conditions:

f(1) = c
f(n+) = G(f(n)).

Let us denote this function by fc. Then, for each c, fc is that unique
function such that

fc(1) = c
fc(n+) = G(fc(n)).

Explicit Definition of Multiplication x · y is the number fx(y).



30 2.7. Multiplication

Exercises

Exercise 2.7.1 Use the definition of multiplication to compute:

1. 4 · 2,

2. 2 · 4.

Exercise 2.7.2 Show x · 3 = (x+ x) + x.

Exercise 2.7.3 Show that the multiplication operation as explicitly de-
fined meets the conditions:

x · 1 = x
x · y+ = x · y + x.

Exercise 2.7.4 Show that only one operation can meet the conditions for
multiplication given above.

2.8 Basic properties of multiplication

Our definition of multiplication says that it meets the conditions

a) x · 1 = x
b) x · y+ = x · y + x

Part a) says multiplying (on the right) by 1 doesn’t change things. For
example, (4 · 3) · 1 = 4 · 3. Similarly part b) says that multiplying (on the
right) by y+ is just mutliplying by y, and then throwing in one more x. For
example, (4 + 3) · 5+ = (4 + 3) · 5 + (4 + 3). Now we proceed to establish
some basic properties of multiplication.

Theorem 2.8.1 (Right distributive law) For any counting numbers x,
y and z, (x+ y) · z = x · z + y · z.

Proof Fix x and y, we do an induction on z. Let C consist of those counting
numbers z for which (x+ y) · z = x · z + y · z. We show C is inductive.

First, (x+ y) ·1 = x+ y = x ·1 + y ·1, by a). Hence 1 ∈ C. Next, suppose
n ∈ C. This means

(x+ y) · n = x · n+ y · n (∗)
We show n+ ∈ C. Our argument makes much use of the commutativity
and associativity of multiplication. Make sure you see the reason for each
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step. Now,

(x+ y) · n+ = (x+ y) · n+ (x+ y) (part b)
= (x · n+ y · n) + (x+ y) (by ∗)
= x · n+ [y · n+ (x+ y)]
= x · n+ [y · n+ (y + x)]
= x · n+ [(y · n+ y) + x]
= x · n+ [x+ (y · n+ y)]
= (x · n+ x) + (y · n+ y)
= x · n+ + y · n+ (part b)

Hence n+ ∈ C.
Then C is inductive, and the proof is done.

Lemma 2.8.2 For any counting number x, 1 · x = x.

Theorem 2.8.3 (Commutative law for multiplication)
For any counting numbers x and y, x · y = y · x.

Proof Fix x, we do an induction on y. Let C consist of those counting
numbers y for which x · y = y · x. We show C is inductive.

By definition, x · 1 = x. By Lemma 2.8.2, 1 · x = x. Hence x · 1 = 1 · x
and this means 1 ∈ C.

Next, suppose n ∈ C. This means x · n = n · x, which we refer to as ∗.
We show n+ ∈ C. Well,

x · n+ = x · n+ x (part b)
= n · x+ x (by ∗)
= n · x+ 1 · x (by Lemma 2.8.2)
= (n+ 1) · x (Theorem 2.8.1)
= n+ · x

so n+ ∈ C.
C is inductive, and we are done.

Corollary 2.8.4 (Left distributive law) For any counting numbers x,
y and z, x · (y + z) = x · y + x · z.

Proof Using commutativity and the right distributive law,

x · (y + z) = (y + z) · x
= y · x+ z · x
= x · y + x · z

Theorem 2.8.5 (Associative law for multiplication) For any count-
ing numbers x, y and z, x · (y · z) = (x · y) · z.
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Proof Fix x and y. We do an induction on z. Let C consist of those
counting numbers z for which x · (y · z) = (x · y) · z. First

x · (y · 1) = x · y (part a)
= (x · y) · 1 (part a)

so 1 ∈ C.
Next, suppose n ∈ C. This means

x · (y · n) = (x · y) · n (∗)

We show n+ ∈ C. Well,

x · (y · n+) = x · (y · n+ y) (part b)
= x · (y · n) + x · y (Corollary 2.8.4)
= (x · y) · n+ x · y (by ∗)
= (x · y) · n+ (part b)

and this says n+ ∈ C.
Hence C is inductive, and we are done.

Earlier we said that because addition was associative and commutative,
we could arrange a sum of several numbers to suit our convenience. We
have similar properties for multiplication, and similar results follow.

We have a left and a right distibutive law. Generally they are both
grouped together under the single name distributive law. In high-school
algebra language,

x · y + x · z = x · (y + z)

says we can factor out x from x·y+x·z. We will see in Chapter Four that the
distributive law is one of the main facts behind the method of multiplication
taught in elementary school. And finally, once we have shown that 1+1 = 2,
the distributive law gives us an immediate generalization to x + x = 2 · x
as follows.

x+ x = 1 · x+ 1 · x (Lemma 2.8.2)
= (1 + 1) · x (distributive law)
= 2 · x.

Exercises

Exercise 2.8.1 Prove Lemma 2.8.2.

Exercise 2.8.2 Give a proof of the left distributive law, x · (y + z) =
x ·y+x ·z, directly from the definition of multiplication, without using any
of the results proved in this section.

Exercise 2.8.3 Show (3 · 4) · (5 · 6) = [(6 · 4) · 3] · 5.
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Exercise 2.8.4 Show [(2 · 4) · 6] · 8 = 6 · [4 · (8 · 2)].

Exercise 2.8.5

1. Show 3 + 2 = 5.

2. Show 3 · x+ 2 · x = 5 · x.

2.9 Exponentiation

To define the operation of raising to a power, we follow the pattern of our
definitions of addition and multiplication.

Multiplication, informally, is repeated addition. We may similarly think
of exponentiation as repeated multiplication. We may think of 43 as telling
us to write down 3 4’s and multiply them. And once again we want to
express this without involving machinery to count things. Well, x1 should
be the result of multiplying together a collection of one x, that is, just x
itself. So we want x1 = x.

Next, suppose we have computed xy, that is, we have multiplied y x’s
together. What about xy

+
? To compute xy

+
we must multiply y+ x’s to-

gether. We can do this by first multiplying y x’s together, getting xy, then
multiplying by one more x, getting xy · x. So we want xy

+
= xy · x.

Definition 2.9.1 Exponentiation is that operation on the counting num-
bers meeting the conditions

a) x1 = x

b) xy
+

= xy · x.

Exercises

Exercise 2.9.1 Use the definition of exponentiation to compute:

1. 32,

2. 23.

Exercise 2.9.2 Show:

1. x2 = x · x,

2. x3 = (x · x) · x.

Exercise 2.9.3 The definition of exponentiation just given is an implicit
one. Follow Section 2.5 and:

1. Give an explicit definition of exponentiation;
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2. Show your explicitly defined operation meets the exponentiation con-
ditions above;

3. Show only one operation can meet the exponentiation conditions.

2.10 Basic properties of exponentiation

This time we simply state the basic results, and leave the proofs to you.

Theorem 2.10.1 For any counting numbers x, y and z, (x · y)z = xz · yz.

Theorem 2.10.2 For any counting numbers x, y and z, x(y+z) = xy · xz.

Theorem 2.10.3 For any counting numbers x, y and z, (xy)z = x(y·z).

Both addition and multiplication are commutative, x + y = y + x, and
x · y = y · x. But exponentiation is not. If you did Exercise 2.9.1 you saw
that 32 and 23 are different. Also both addition and multiplication are
associative, x + (y + z) = (x + y) + z and x · (y · z) = (x · y) · z. Again,
exponentiation is not.

It is a reasonable question, what makes a fact a basic fact. Why did we
chose to prove the theorems we did? Our basic operations are addition,
multiplication, and exponentiation. Certainly anything that expresses a
simple relationship between these operations would be fundamental. What
are the possiblities?

Addition and multiplication.
Here the connection is the distributive law, a · (b+ c) = a · b+ a · c. Note

that since multiplication is commutative, we needn’t state both left and
right distributive laws.

Multiplication and exponentiation.
Now, exponentiation is not a commutative operation. So in xy, we might

expect a difference if x or if y is represented as a product. And this is the
case. If x is a product, we have Theorem 2.10.1, (a · b)c = ac · bc; and if y
is the product, we have Theorem 2.10.3, ab·c = (ab)c.

Addition and exponentiation.
Again, in xy it makes a difference which of x or y is the sum. We expect

two fundamental laws again. If y is the sum, we have Theorem 2.10.2,
a(b+c) = ab · ac. If x is the sum, we have stated nothing that would cover
the situation. What can be done with (a + b)c? Actually it is the subject
of something called the Binomial Theorem. It does not have the simple
appearance of the other fundamental laws, but it is as basic as they are. It
is, however, beyond the scope of this chapter. We content ourselves with a
very special case in an exercise.
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Exercises

Exercise 2.10.1 Prove Theorem 2.10.1.

Exercise 2.10.2 Prove Theorem 2.10.2.

Exercise 2.10.3 Prove Theorem 2.10.3.

Exercise 2.10.4 Show that for any counting number x, 1x = 1.

Exercise 2.10.5 Evaluate both 2(12) and (21)2, and show they are differ-
ent.

Exercise 2.10.6 Show (x+ y)2 = [x2 + 2(x · y)] + y2.

2.11 Order

What does it mean to say 5 is bigger than 2? Intuitively it means that if
we start at 2 and count, we will eventually reach 5. In fact, we will reach it
after counting off 3 numbers. Thus, 2+++ = 5, and this tells us 5 is greater
than 2. More generally, suppose x and y are any counting numbers. What
does it mean to say x is greater than y? It means that if we start at y and
count we will eventually reach x. How many numbers must we count off?
This depends on the relative sizes of x and y. Some undetermined number
of them is the best we can say; call it n. Thus y++···+ = x, where we have
‘written’ n successor symbols, and this tells us x is greater than y. Now we
have seen that y+ = y + 1, y++ = y + 2, and y+++ = y + 3. In fact, for
each n, y++···+, where we have n +’s, is y + n. So to say x is greater than
y is to say, for some counting number n, x = y++···+ = y + n. We will not
use an expression like y++···+ since it requires us to count things, in this
case successor symbols, but y + n is quite acceptable.

With this as motivation, we give our official characterization.

Definition 2.11.1 Let x and y be counting numbers. We say x is greater
than y if x = y + n for some counting number n.

If x is greater than y, we write x > y, and also y < x. Both symbols
are due to Harriot, a British mathematician and surveyer of Virginia, who
died in 1621. We also write x ≥ y for x > y or x = y. And x ≤ y for x < y
or x = y.

The two chief results about order are given the names transitivity and
trichotomy. To say > is transitive is to say we can go from x > y and
y > z to x > z. Let us say x and y are comparable if one of x > y or
x = y or x < y holds. Trichotomy says that any two counting numbers are
comparable, and further, can be compared in only one way. We devote the
rest of this section to the proofs of these results.
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Theorem 2.11.2 (Transitivity of >) For any counting numbers x, y
and z, if x > y and y > z then x > z.

Proof Suppose x > y and y > z. Then there are counting numbers n and
k such that y + n = x and z + k = y. Then

z + (k + n) = (z + k) + n
= y + n
= x

Thus adding k + n to z produces x, so x > z.

The rest of the section is devoted to the proof of the trichotomy law. It
is most easily done as a series of small results.

Lemma 2.11.3 For any counting numbers y and n, y + n 6= y.

Proof Recall, every counting number either is 1 or has a predecessor. We
thus can divide the proof into two cases.

Case 1) y = 1. Suppose we had y+ n = y. Then 1 + n = 1; n+ 1 = 1, so
n+ = 1 contradicting Axiom 3. So y + n 6= y.

Case 2) y has a predecessor, say y = x+. Now suppose we had y+n = y.
Then

x+ + n = x+

(x+ 1) + n = x+ 1
x+ (1 + n) = x+ 1
x+ (n+ 1) = x+ 1

x+ n+ = x+ 1
n+ = 1

The last step above is by the cancellation law for addition. Now we are
contradicting Axiom 3 again. Thus y + n 6= y.

Lemma 2.11.4 Let y be a counting number. We never have y > y.

Proof If y > y, then for some n, y + n = y, contradicting the previous
Lemma.

Theorem 2.11.5 Let x and y be counting numbers. Of the three relation-
ships x > y, x = y, x < y, not more than one can hold.

Proof
1) Suppose we had x > y and x = y. Then, substituting y for x we have
y > y, contradicting the Lemma above.

2) x = y and x < y are similar.
3) Suppose we had x > y and x < y. Since x < y, y > x. But x > y so

by transitivity, y > y again contradicting the Lemma above.

We now have proved two numbers can not be compared in more than
one way. We have yet to show any two numbers can be compared.
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Lemma 2.11.6 For any counting numbers x and y, if x > y, then x ≥ y+.

Proof Suppose x > y. Then for some n, x = y+n. We consider two cases.
case 1) n = 1. Then

x = y + n
= y + 1
= y+.

Since x = y+, then x ≥ y+.
case 2) n has a predecessor, say n = k+. Then

x = y + n
= y + k+

= y + (k + 1)
= y + (1 + k)
= (y + 1) + k
= y+ + k

So y+ with k added gives x. Then x > y+, so again, x ≥ y+.

Let us call a number k a comparable number if: for every x, x > k or
x = k or x < k. That is, k is comparable if the order relationship between
it and any counting number is determined.

Lemma 2.11.7 Every counting number is a comparable number.

Proof Let C be the collection of counting numbers which are comparable.
We show C is inductive.

By Exercise 2.11.3, for every x either x > 1 or x = 1, hence 1 is a
comparable number, 1 ∈ C.

Next we show C is closed under successor. Suppose n ∈ C; we show
n+ ∈ C. Let x be any counting number. We must show n+ and x can be
compared. Now n ∈ C, so we have that n and x can be compared, that is,
we have one of n > x or n = x or n < x. We consider each case separately.

Case 1) n > x. By Exericse 2.11.2, n+ > n, so by transitivity, n+ > x.
In this case n+ and x can be compared.

Case 2) n = x. By Exercise 2.11.2 again, n+ > n, so n+ > x. Again n+

and x can be compared.
Case 3) n < x. That is, x > n. Then by Lemma 2.11.6, x ≥ n+, that is,

x > n+ or x = n+. Either way, n+ and x can be compared.
In each case, n+ and x can be compared. Since x was arbitrary, n+ is a

comparable number, n+ ∈ C.
Thus C is inductive, and we are done.

Theorem 2.11.8 (Trichotomy Law) Let x and y be counting numbers.
Exactly one of the following holds: x > y, x = y, x < y.
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Proof By the previous Lemma, x is a comparable number, and so can be
compared with y, whatever y is. Thus one of the three relationships must
hold. That exactly one holds is by Theorem 2.11.5.

Exercises

Exercise 2.11.1 Prove the following.

1. If x > y and y ≥ z then x > z.

2. If x ≥ y and y > z then x > z.

3. If x ≥ y and y ≥ z then x ≥ z.

Exercise 2.11.2 Show for every counting number n, n+ > n.

Exercise 2.11.3 Show for every counting number x, x ≥ 1. Hint: consider
two cases, x = 1 and x has a predecessor.

Exercise 2.11.4 Show the equation x+ 7 = 3 has no solution.

2.12 Insertion and cancellation

We have already proved a cancellation law for addition: if x + z = y + z
then x = y. Trivially, if x = y then x + z = y + z. Putting these into one
statement gives us

Theorem 2.12.1 For any counting numbers x, y and z, x = y if and only
if x+ z = y + z.

What we do in this section is establish similar results for multiplication
and exponentiation, and also similar results with = replaced by >.

Theorem 2.12.2 For any counting numbers x, y and z, x > y if and only
if x+ z > y + z.

Proof

1) Suppose x > y. Then for some counting number n, x = y + n. Then

x+ z = (y + n) + z
= y + (n+ z)
= y + (z + n)
= (y + z) + n

and this says x+ z > y + z.
2) Suppose x + z > y + z. We claim we must have x > y. For if we did

not, by the trichotomy law we must have one of x = y or y > x. If we had
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x = y, we would have x + z = y + z, but we have x + z > y + z and the
trichotomy law says we can’t have both. If we had y > x, then by what we
just showed in part 1, we would have y + z > x + z, and the trichotomy
law says we can’t have this. So we must have x > y.

Theorem 2.12.3 For any counting numbers x, y and z, x > y if and only
if x · z > y · z.

Proof

1) Suppose x > y. Then for some counting number n, x = y + n. Then
x · z = (y + n) · z. Using the distributive law, x · z = y · z + n · z, and this
says x · z > y · z.

2) Suppose x · z > y · z. If we had x = y, we would have x · z = y · z,
contradicting the trichotomy law. If we had y > x, then by part 1 we
would have y · z > x · z, again contradicting the trichotomy law. So, using
the trichotomy law one more time, we must have x > y.

Theorem 2.12.4 For any counting numbers x, y and z, x = y if and only
if x · z = y · z.

Theorem 2.12.5 Suppose x > a and y > b. Then

1. x+ y > a+ b;

2. x · y > a · b.

Proof x > a, so by Theorem 2.12.2, x+ y > a+ y. Also y > b so similarly
a+ y > a+ b. Then by transitivity, x+ y > a+ b. Part 2 is similar.

Theorem 2.12.6 For any counting numbers x, y and z, x > y if and only
if xz > yz.

Theorem 2.12.7 For any counting numbers x, y and z, with z 6= 1, x > y
if and only if zx > zy.

Theorem 2.12.8 For any counting numbers x, y and z:

1. x = y if and only if xz = yz;

2. if z 6= 1, x = y if and only if zx = zy.

Exercises

Exercise 2.12.1 Give another proof of part 2 of Theorem 2.12.2 without
using the trichotomy law.

Exercise 2.12.2 Prove Theorem 2.12.4.
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Exercise 2.12.3 Prove Theorem 2.12.6. Hint: First show that x > y im-
plies xz > yz by induction on z, using Theorem 2.12.5. Show the converse
by using the trichotomy law.

Exercise 2.12.4 Show that if z 6= 1, zn > 1.

Exercise 2.12.5 Prove Theorem 2.12.7. Hint. For the implication from
left to right, Theorem 2.10.2 is needed.

Exercise 2.12.6 Prove Theorem 2.12.8.

2.13 The Well Ordering Theorem

Whenever one adds fractions, one puts them over a common denominator.
Many of us were taught to use the least common denominator. How do
we know there is one? More precisely, why must the set S of common
denominators have a least member?

Suppose we are discussing some particular infinite decimal, which we
know to be non-zero. Then it has non-zero decimal places. Consider the
first non-zero decimal place. But again, how do we know there is one?
More precisely, let S be the following collection of counting numbers: put n
in S if the nth decimal place is not zero. Why must S have a least member?

Both of these are special cases of the following very general result about
the counting numbers.

Theorem 2.13.1 (Well-ordering theorem)
Let S be any non-empty collection of counting numbers. S has a least mem-
ber.

Remark x is least in S if x ∈ S and, for any y ∈ S, x ≤ y. The theorem
really says something about the order relation of the counting numbers. In
general, an order relation is called a well-ordering provided any non-empty
collection has a least member (in that ordering). Hence the name of the
theorem.

Proof Let S be a collection of counting numbers, and suppose S has no
least member. We show S must be empty. (And so, if S isn’t empty after
all, it must have had a least member.)

We form a collection C of counting numbers as follows. Put n in C if
every counting number ≤ n is outside S. We show C is inductive.
x ≥ 1 for every counting number x. It follows that if 1 were in S it would

be a least member. But S has no least member so 1 /∈ S. Further since
x ≥ 1 for all x, the only counting number ≤ 1 is 1 itself, and as we just
saw, that is outside S. Then by definition, 1 ∈ C.

Next we show C is closed under successor. Suppose n ∈ C. We show
n+ ∈ C.



2. The Counting Numbers 41

Suppose we had n+ ∈ S. We claim n+ would be a least member. For, take
any x ∈ S. We can’t have x ≤ n, since n ∈ C, which means all counting
numbers ≤ n are outside S, but x ∈ S. Since we don’t have x ≤ n, by
trichotomy, x > n, and so x ≥ n+. Since x is any member of S, this says
n+ is a least member of S. But S has no least member. Thus n+ /∈ S.

Now suppose x ≤ n+. Then either x = n+ or x < n+. By Exercise 2.13.2,
either x = n+ or x ≤ n. If x = n+, x /∈ S by the paragraph above. If x ≤ n,
x /∈ S since n ∈ C. Hence for any x ≤ n+, x is outside S, so by definition,
n+ ∈ C.

Thus C is inductive. Then every counting number is in C. This easily
implies S is empty, and the proof is finished.

As an illustration of how the Well Ordering Theorem is used, we show
the following.

Theorem 2.13.2 There are no counting numbers between 1 and 2.

Proof Suppose there were counting numbers between 1 and 2. That is,
suppose there were counting numbers x with 1 < x < 2. Let S be the
collection of all such. By our supposition, S is not empty, so by the Well
Ordering Theorem, S has a least member, call it c. Then 1 < c < 2, and c
is the smallest counting number meeting this condition.

Now, 1 < c, so c 6= 1. Then c must have a predecessor, say c = d+, so
that d ≥ 1. We consider both cases separately.

case 1) d = 1. Then d+ = 1+, which says c = 2. This case is impossible,
since c < 2.

case 2) d > 1. Now d < d+ = c < 2, so d < 2. Then d is also between
1 and 2. Further, d < d+ = c, so d < c. But c was the smallest counting
number between 1 and 2; d is smaller than c, and is also between 1 and 2.
This case is impossible too.

We have reached contradictions in both cases. The conclusion is, we
started out wrong. There are no counting numbers between 1 and 2.

Corollary 2.13.3 There are no counting numbers between a and a+.

Proof Suppose we had an x with a < x < a+. Since x > a, by definition,
x = a+ n for some n. Thus what we have is a < a+ n < a+. We consider
two cases.

case 1) a = 1. Then we are contradicting the Theorem.
case 2) a 6= 1. Then a has a predecessor, say a = b+. Then what we have

is b+ < b+ +n < (b+)+. From this we easily get b+ 1 < b+ (1 +n) < b+ 2
and by Theorem 2.12.2 we conclude 1 < 1 + n < 2 again contradicting the
Theorem above.

Thus there are no counting numbers between a and a+.

The Well Ordering Theorem talks about least members of non-empty
sets of counting numbers. We can not expect a similar result about greatest
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members since, for example, the collection of all counting numbers doesn’t
have a greatest member. But we do have the following.

Definition 2.13.4 We say a collection C of counting numbers is bounded
by y if every member of C is < y. We say C is bounded if it is bounded by
some y.

Theorem 2.13.5 Let C be a bounded, non-empty collection of counting
numbers. C has a greatest member.

Our axioms were about counting. They took as basic the notion of suc-
cessor. For other purposes, axioms for the counting numbers are sometimes
given which take the ordering relation, >, as basic. A typical axiom in this
approach is: > is transitive. Generally, in this approach, the Well–Ordering
Theorem itself is taken as an axiom, and plays a role rather similar to that
which Axiom 5, the induction axiom, played in our development. In such
a development, our Axiom 5 would be a theorem.

Exercises

Exercise 2.13.1 Show a collection of counting numbers can’t have two
least members.

Exercise 2.13.2 Suppose x < n+. Show x ≤ n.

Exercise 2.13.3 Prove Theorem 2.13.5. Hint:

1. Form a collection S as follows. Put y in S if every member of C is
< y.

2. Show S has a least member, say c.

3. Show c 6= 1.

4. Then c has a predecessor, say c = d+. Show d ∈ C (use the fact that
x < d+ implies x ≤ d).

5. Show d is the greatest member of C.

2.14 Conclusion

We have now developed the basic properties of the counting numbers, and
of addition, multiplication, and exponentiation for them. We have said
nothing about the inverse operations, subtraction, division and the extrac-
tion of roots. It is more convenient to leave subtraction and division for the
next chapter. And extraction of roots simply has no natural place in any
of the number systems we discuss before we get to the real number system
starting in Chapter Seven.
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The Whole Number System
Master. If number were so vile a thing as you did esteem it,

then need it not be used so much in mens communication. Exclude
number, and answer to this question: How many years old are you?

Scholar. Mum.
Master. How many dayes in a weeke? How many weeks in a year?

What lands hath your Father? How many men doth hee keep? How
long is it since you came from him to me?

Scholar. Mum.
Master. So that if number want, you answer all by Mummes:

How many miles to London?
Scholar. A poak full of plums.
Master. Why, thus you see, what rule number beareth, and that

if number bee lacking it maketh men dumb, so that to most questions
they must answer Mum.

–The Declaration of the Profit of Arithmeticke, about 1540
Robert Recorde

3.1 The Number Zero

For the ancient world, numbers began with 1. There was nothing that
played the role of our 0. But eventually people took the natural step and
evolved a system of number names based on the operation of the abacus,
which in turn was based on finger counting. Now, on an abacus, if we have
three beads on a wire, we can represent this by writing down the symbol
‘3’. If there are no beads on a wire, we need some way of representing this
fact too, and at some point the symbol ‘0’ was introduced. Having been
introduced for such a purpose, its uses gradually broadened. It began to be
treated in much the same way the symbols ‘1’, ‘2’, ‘3’, etc., were. It entered
into calculations. The number concept itself broadened in men’s minds, so
that ‘0’, from being a useful symbol, became the name of a number just as
the other symbols were. In short, ‘1’, ‘2’, ‘3’, etc., name numbers and they,
or their equivalents, always have. That there is something called a number
for ‘0’ to name is a relatively recent development. A closer look is in order.

We use the symbol ‘2’ as a name for a certain counting number. This
counting number is a mental concept, an idea; specifically, the idea of
twoness. By considering a great many cases in which it was correct to
say, “something, and something else, and that’s all,” we formed the idea
of twoness. Similarly ‘3’ denotes a concept of threeness and so on. It is a
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genuine extension of this group of ideas to include a concept of nothingness.
By considering many situations in which we have nothing to count, we can
abstract a general idea of nothingness. This concept is certainly related to
our ideas of oneness, twoness, etc., but it has obvious differences too. It
represents our inability to count, rather than the results of our counting.
Still, it is natural to extend the number concept to include it. We use ‘0’
to name this concept of nothingness, just as we use ‘2’ to name twoness.

For the rest of this chapter we develop the properties of this new number,
denoted by ‘0’.

3.2 The Whole Number System

If zero is added to a number, the sum is that number itself; if zero
is subtracted, the number remains unchanged; if zero is multiplied,
the result is zero; and if a number is multiplied by zero, the product
is zero only.

Sridhara the Learned
(Hindu mathematician,

born 991 AD
in Ganita-Sara)

Definition 3.2.1 The whole numbers are the counting numbers together
with 0 (which is not a counting number).

Next, we use our discussion of the previous sections and come up with a
natural extension of the basic operations of arithmetic to include 0. First,
counting.

Recall, going from x to x+ corresponded to counting off one more. If
we have a collection of objects and we have counted off 3 of them; after
counting off one more, we have counted off 3+ of them. At that stage at
which we have not yet begun to count objects, we may say we have counted
off 0 objects. Then, having counted off one object, of course we have counted
1 of them. Thus the successor of 0 ought to be 1.

Definition 3.2.2 0+ = 1.

Next, addition. The intuitive idea on which we based our axioms for
counting number addition was: 3 + 2 tells us to start at 3 and count off the
next 2 numbers. Then, applying the same idea, 3 + 0 tells us to start at 3
and count off the next 0 numbers; that is, don’t count. Of course we stay
at 3. Then, it is natural to take 3 + 0 to be 3.

On the other hand, 0 + 3 tells us to start at 0 and count off the next
3 numbers. That is, 0 + 3 should be 0+++. But, using our definitions,
0+++ = 1++ = 2+ = 3. Thus 0 + 3 also should be 3.

Definition 3.2.3 Let x be any whole number. We take x+ 0 = 0 +x = x.
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We go on to multiplication. The idea we followed in the last chapter was
that multiplication was repeated addition, and so 2 · 3 told us to add 3 2’s
together. This idea easily covers 0 · 3. It tells us to add 3 0’s together. But,
using the definition above, (0 + 0) + 0 = 0 + 0 = 0, so 0 · 3 ought to be 0.

There is more of a problem with 3 · 0 however. If we apply our basic
idea, we find ourselves adding together 0 3’s. We have no 3’s (or anything
else) to work with, so we certainly can’t get a number for an answer. Our
original motivation isn’t sufficient to cover this case.

Maybe a natural extension of our original ideas will work. We don’t know
how 3 · 0 ought to behave by itself, but maybe we can decide how it should
behave when other numbers are around. Let us first consider the expression
4 + 3 · 2. This seems to tell us to add 2 3’s to 4. Next, consider 4 + 3 · 0.
Reasonably, this tells us to add 0 3’s to 4, that is, leave 4 alone. The result,
of course, is 4. Then, adding 3 ·0 to 4 is the same as not adding any amount
to 4, or by the definition above, it is the same as 4+0. That is, in additions,
3 · 0 behaves like 0. Since it does so here, we simply take 3 · 0 to be 0.

Definition 3.2.4 Let x be any whole number. We take x · 0 = 0 · x = 0.

Finally exponentiation. The idea we followed was that exponentiation
was repeated multiplication, and so 23 told us to multiply 3 2’s together.
This also immediately extends to cover 03. We are told to multiply 3 0’s
together. But by the definition above, (0 · 0) · 0 = 0 · 0 = 0. Then 03 should
be 0. More generally, 0n should be 0 where n is a counting number.

The case of 30 is a problem much like that of 3 · 0 above. It tells us to
multiply 0 3’s together. We get no result since we are given no numbers to
work with. Again, as above, we may be able to see how 30 ought to function
as part of a larger calculation. Consider first 4 ·32. This tells us to multiply
4 by 2 3’s. Next, consider 4 · 30. This, by analogy, says we are to multiply 4
by 0 3’s, that is, leave 4 alone. 4 ·30 ought to be just 4. Multiplying 4 by 30

is the same as taking 4 itself, that is, 4 · 1 or one 4. Since 30 behaves like 1
in multiplications, we take 30 to be 1. More generally, these considerations
lead us to set x0 = 1 where x is any counting number.

Definition 3.2.5 Let n be any counting number. We set 0n = 0 and n0 =
1.

Notice that since 0 is not a counting number, 00 has not been defined.
It is, in fact, a troublesome case. If we extend the clause 0n = 0 to allow
n to be 0, we are led to 00 = 0. Likewise if we extend the clause n0 = 1 to
allow n to be 0, we are led to 00 = 1. Should 00 be 0 or 1 then?

In Chapter Two we proved several results about exponentiation in the
counting number system. We might try to extend those to the whole number
system using the definition above together with:

Possibility 1 00 = 0;
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Possibility 2 00 = 1.

In this way we could perhaps see which possibility gives rise to a mathe-
matically simpler theory, and use this as a guide in assigning a value to 00.
But if we try this we quickly discover that every theorem on exponentia-
tion extends to the whole number system equally well under either of the
possibilities.

Since we have no guide to follow we are best off leaving 00 undefined. As
a matter of fact, in more advanced areas of mathematics it is apparent that
any choice of a value for 00 will have undesirable consequences. So leaving
00 undefined is the common course.

From now on, whenever we write xy it is understood that x and y are
whole numbers not both 0. We will not explicitly mention this qualification
every time an exponentiation appears.

3.3 Basic Properties

All the fundamental laws about adding, multiplying and raising to powers
for the counting numbers easily extend to include 0. The proofs are quite
simple. In Chapter Two we had to show things for infinitely many numbers;
now we only have to check one more case. We do a few by way of example,
and leave the rest as exercises.

Theorem 3.3.1 Let x, y and z be whole numbers. Then:

1. x+ y = y + x;

2. x+ (y + z) = (x+ y) + z;

3. x · y = y · x;

4. x · (y · z) = (x · y) · z;

5. x · (y + z) = x · y + x · z.

Proof (of part 2.) x, y and z are whole numbers, so one of the following
eight situations must hold:

1. x, y and z are all counting numbers;

2. x and y are counting numbers, z is 0;

3. x and z are counting numbers, y is 0;

4. y and z are counting numbers, x is 0;

5. x and y are 0, z is a counting number;

6. x and z are 0, y is a counting number;

7. y and z are 0, x is a counting number;



3. The Whole Number System 47

8. x, y and z are 0.

Please note the system we followed in listing the cases, to make sure we
got them all. Now, all we have to do is check that x+ (y+ z) = (x+ y) + z
is true in all 8 cases.

In case 1, x+ (y+ z) = (x+ y) + z is true since we proved it in Chapter
Two. In case 2, the statement becomes x + (y + 0) = (x + y) + 0. But
x+ (y + 0) = x+ y and (x+ y) + 0 = x+ y by definition, hence in case 2
statement is true.

The other six cases are similar.

Theorem 3.3.2 Let x, y and z be whole numbers. Then:

1. 1x = 1;

2. (x · y)z = xz · yz;

3. xy+z = xy · xz;

4. (xy)z = xy·z.

Exercises

Exercise 3.3.1 Check the other parts of Theorem 3.3.1.

Exercise 3.3.2 Prove Theorem 3.3.2.

Exercise 3.3.3 Show the following continue to hold in the whole number
system:

1. x+ 1 = x+;

2. x+ y+ = (x+ y)+;

3. x · 1 = x;

4. x · y+ = x · y + x;

5. x1 = x;

6. xy
+

= xy · x.

3.4 Order of whole numbers

Recall our discussion of ‘bigger than’ for counting numbers. x > y meant,
intuitively, we could start counting at y and eventually we would reach
x, that is, x = y++···+, for some number n of successor symbols. Clearly
we don’t want n to be 0; this would say we reach x by starting at y and
not counting at all, that is, y and x are the same. We really want some
successor symbols to be present.
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Definition 3.4.1 Let x and y be whole numbers. We say x is bigger than
y if x = y + n for some counting number n.

If x is bigger than y, we write x > y. We use the symbols ≥, < and ≤
as usual.

Theorem 3.4.2 Let x and y be whole numbers. Then x > y if and only
if one of the following is true: 1) both x and y are counting numbers and
x > y as defined in Chapter Two, or 2) x is a counting number but y is 0.

Proof

Part I) Suppose x > y. Then x = y+n for some counting number n. We
have two possibilities.

a) y = 0. Then x = y + n = 0 + n = n, so x is a counting number, and
item 2) of the theorem holds.

b) y 6= 0. Then y must be a counting number. But so is n, hence so is x
since it is y + n. Then item 1) of the theorem holds.

Part II) Suppose one or the other of items 1) and 2) hold. We have two
possiblities.

a) Item 1) holds. Then, by the definition of Chapter Two, x = y + n for
some counting number n. Of course this means x > y by the definition of
this section.

b) Item 2) holds. Then x itself is a counting number. Now x = 0 + x, so
x > 0 by our present definition, that is, x > y.

Remark By this theorem, we can’t have 0 > 0, or more generally, 0 > x.

Theorem 3.4.3 Let x and y be whole numbers. Then x ≥ y if and only if
x = y + z for some whole number z.

Theorem 3.4.4 (transitivity) For any whole numbers x, y and z, if x >
y, and y > z then x > z.

Theorem 3.4.5 (trichotomy law) For any whole numbers x and y ex-
actly one of the following holds: x > y, x = y, x < y.

Proof Again we have a proof by cases. There are four to consider.

1. x and y are counting numbers,

2. x is a counting number, y is 0,

3. x is 0, y is a counting number,

4. x and y are 0.
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We take them in order.
Case 1) x and y are counting numbers. Then the result is exactly the

statement of the Trichotomy law for counting numbers, as proved in Chap-
ter Two.

Case 2) x is a counting number, y is 0. By Theorem 3.4.2, x > y, so
one of the three possibilities holds. We can’t have y > x because it says
0 > x which Theorem 3.4.2 rules out. Also we can’t have x = y; since x
is a counting number but y isn’t. Thus in case 2 exactly one of the three
possibilities holds.

Case 3) x is 0, y is a counting number. This is similar to case 2.
Case 4) x and y are 0. Then of course x = y. By Theorem 3.4.2 we don’t

have 0 > 0, so both of x > y and y > x are out. Again exactly one of the
three possibilities holds.

Exercises

Exercise 3.4.1 Show that for any whole numbers x and y, if x > y then
x ≥ y+.

Exercise 3.4.2 Prove Theorem 3.4.3.

Exercise 3.4.3 Prove Theorem 3.4.4 (Hint: use the proof of transitivity
of > for counting numbers).

3.5 Insertion and cancellation

The results of Chapter Two extend easily to include 0. We state the exten-
sions, and leave the verifications as exercises.

Theorem 3.5.1 For any whole numbers x, y and z, x = y if and only if
x+ z = y + z.

Theorem 3.5.2 For any whole numbers x, y and z, x > y if and only if
x+ z > y + z.

Theorem 3.5.3 For any whole numbers x, y and z with z not 0, x > y if
and only if x · z > y · z.

Even though z can’t be 0 in the theorem above, we have the following:

Theorem 3.5.4 For any whole numbers x, y and z, if x ≥ y then x · z ≥
y · z.

Theorem 3.5.5 For any whole numbers x, y and z, with z not 0, x = y
if and only if x · z = y · z.
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Theorem 3.5.6 For any whole numbers x, y and z with z 6= 0, x > y if
and only if xz > yz.

Theorem 3.5.7 For any whole numbers x, y and z, with z not 0 or 1,
x > y if and only if zx > zy.

Theorem 3.5.8 For any whole numbers x, y and z,

1. if z 6= 0, then x = y if and only if xz = yz,

2. if z 6= 0, z 6= 1, then x = y if and only if zx = zy.

Exercises

Exercise 3.5.1 Prove Theorem 3.5.1.

Exercise 3.5.2 Prove Theorem 3.5.2.

Exercise 3.5.3 Prove that for any whole numbers x and y, if x+ > y then
x ≥ y.

Exercise 3.5.4

1. Prove Theorem 3.5.3.

2. Show the result is false if the restriction z 6= 0 is dropped.

Exercise 3.5.5 Prove Theorem 3.5.4.

Exercise 3.5.6

1. Prove Theorem 3.5.5.

2. Show the clause z 6= 0 is necessary.

Exercise 3.5.7

1. Prove Theorem 3.5.6.

2. Why is the restriction, z 6= 0, necessary?

Exercise 3.5.8

1. Prove Theorem 3.5.7.

2. Account for the restriction on z.

Exercise 3.5.9

1. Prove Theorem 3.5.8.

2. Account for the restrictions on z.
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3.6 Subtraction

The idea behind addition was that it was counting, not necessarily starting
at 1. Thus, 7 + 4 tells us to start at 7 and count off the next 4 numbers. It
would be useful to have available a similar operation, but involving counting
backwards. We call this subtraction, and symbolize it by x − y. We may
think of 7 − 4 as telling us to start at 7 and count backwards 4 numbers.
But as might be expected, for our official definition, we would rather find
an alternative characterization that won’t require us to count things.

Using our intuitive ideas, what is 7− 4? There is an easy way of seeing
this. Using our definition of addition we can easily compute that 3 + 4 = 7.
But 3+4, informally tells us to start at 3 and count off the next 4 numbers.
Then, if starting at 3 and counting forward 4 produces 7, certainly starting
at 7 and counting backwards 4 should produce 3. In effect, we can verify
that 7− 4 is 3 by showing that 3 + 4 is 7. This suggests the following.

Tentative Definition a− b is that number c for which c+ b = a.

There are two problems with this. First, for any particular a and b, how
do we know when there will be such a number c? Second, if there is an
appropriate number c, how do we know there is only one?

The first problem is easy to deal with. We simply announce that a − b
is to make sense only when there is a number c for which c + b = a. But,
by Theorem 3.4.3, this happens precisely when a ≥ b. Thus, we only define
a− b when a ≥ b.

As to the second problem, suppose we had more than one candidate for
c. That is, suppose we had whole numbers c and c′ for which c+ b = a and
also c′ + b = a. Then certainly c+ b = c′ + b and by Theorem 3.5.1, c = c′.
So, in fact, only one such number can exist.

Definition 3.6.1 Let x and y be any whole numbers. If x ≥ y we say x−y
is defined, and it is that number z such that z + y = x.

According to this definition, x− y is that z such that z+ y = x. That is,
x− y, when added to y, gives x. Also, according to this definition, x− y is
that unique z such that z + y = x. So if z + y = x, z must be x − y. We
list these observations in the following.

Theorem 3.6.2 Let x and y be whole numbers with x ≥ y.

1. (x− y) + y = x,

2. if z + y = x then z = x− y.

Exercises

Exercise 3.6.1 Show 9− 3 is defined and 9− 3 = 6.
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Exercise 3.6.2 Show x− x is defined and x− x = 0.

Exercise 3.6.3 Show x− 0 is defined and x− 0 = x.

Exercise 3.6.4 Show x+ − x is defined and x+ − x = 1.

3.7 Basic properties of subtraction

The basic properties of subtraction have not been as intensively studied as
have those of addition and multiplication. We have no names comparable to
associativity and commutativity, for example. The reason for this is simply
that once negative numbers are introduced, the properties of subtraction
become properties of addition and so do not need special treatment. How-
ever, the basic facts about subtraction were known and used long before
the concept of negative number was developed. Moreover, the properties of
subtraction were part of the original motivation for creating negative num-
bers. For these reasons and others we develop properties of subtraction in
some detail. We begin with some relationships with order.

Theorem 3.7.1 Let x, y and z be counting numbers, with x ≥ z and
y ≥ z. Then x > y if and only if x− z > y − z.

Proof By Theorem 3.5.2, x − z > y − z is equivalent to (x − z) + z >
(y − z) + z. But by Theorem 3.6.2, this is equivalent to x > y.

Theorem 3.7.2 Let x, y and z be counting numbers, with x ≥ y and
x ≥ z. Then y > z if and only if x− y < x− z.

Proof By Theorem 3.5.2, x−y < x− z is equivalent to (x−y) + (y+ z) <
(x−z)+(y+z). This in turn is equivalent to [(x−y)+y]+z < [(x−z)+z]+y
And by Theorem 3.6.2, this is equivalent to x + z < x + y. Finally, by
Theorem 3.5.2 again, this is equivalent to z < y.

Most of the proofs which follow have the same general pattern. We give
this pattern here in schematic form.

Suppose we have two expressions, say A and B, which we want to prove
equal. Say we can find some clever thing, C, which when added to each pro-
duces obviously the same result. That is, A+C and B+C are recognizably
identical. Then:

A+ C = B + C

so by the cancellation law for addition,

A = B.

In short, if adding the same thing to both A and B produces the same
result, A and B must have been the same to begin with.
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Theorem 3.7.3 Let x, y and z be whole numbers with x ≥ z and z ≥ y.
Then x− y = (x− z) + (z − y).

Remark x ≥ z and z ≥ y so both subtractions on the right hand side are
defined. Also, by transitivity, x ≥ y, so the subtraction on the left hand
side is defined.

Proof Let us add y to each of the expressions x− y and (x− z) + (z− y).

(x− y) + y = x (Theorem 3.6.2)
Also,

[(x− z) + (z − y)] + y = (x− z) + [(z − y) + y] (associativity)
= (x− z) + z (Theorem 3.6.2)
= x (Theorem 3.6.2)

Since we get the same results in both cases, x−y and (x−z)+(z−y) must
have been the same to begin with (recall, the cancellation law for addition
is being used here).

Theorem 3.7.4 (Distributive law for subtraction)
Let x, y and z be whole numbers with y ≥ z. Then, x · (y− z) = x ·y−x · z.

Remark y ≥ z, so y − z is defined. Also, since y ≥ z, x · y ≥ x · z, so
x · y − x · z is defined.

Proof We add x · z to the two expressions in question.

(x · y − x · z) + x · z = x · y (Theorem 3.6.2)
and
x · (y − z) + x · z = x · [(y − z) + z] (distributive law)

= x · y (Theorem 3.6.2)

This establishes the theorem.

Theorem 3.7.5 Let x, y and z be whole numbers with y ≥ z. Then (x +
y)− z = x+ (y − z).

Theorem 3.7.6 Let x, y and z be whole numbers with x ≥ y + z. Then
x− (y + z) = (x− y)− z = (x− z)− y.

Theorem 3.7.7 Let x, y and z be whole numbers with x ≥ y. Then x−y =
(x+ z)− (y + z).

Theorem 3.7.8 Let x, y and z be whole numbers. Then:

1. if x+ z ≥ y ≥ z, x− (y − z) = (x+ z)− y;

2. if x ≥ y ≥ z, x− (y − z) = (x− y) + z.
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Exercises

Exercise 3.7.1 Let x, y, z and w be whole numbers and suppose x > y
and z < w. Show x− z > y − w.

Exercise 3.7.2 Let x, y, z and w be whole numbers and suppose x ≥ y
and z ≥ w. Show x · z + y · w ≥ x · w + y · z.

Exercise 3.7.3 Show all subtractions in Theorem 3.7.5 are defined and
establish the theorem.

Exercise 3.7.4 Show all subtractions in Theorem 3.7.6 are defined, and
establish the theorem.

Exercise 3.7.5 Show all subtractions in Theorem 3.7.7 are defined, and
establish the theorem.

Exercise 3.7.6 Show all subtractions in Theorem 3.7.8 are defined, and
establish the theorem. Hint: For part 1 Theorem 3.7.3 is useful. Part 2 can
be derived from part 1, or proved directly.

Exercise 3.7.7 Let x, y, z and w be whole numbers with x ≥ y and z ≥ w.
(See Exercise 3.7.2.) Show (x− y) · (z−w) = (x · z+ y ·w)− (x ·w+ y · z).

3.8 Archimedian order

. . . the greater exceeds the less by such a magnitude as, when
added to itself, can be made to exceed any assigned magnitude among
those which are comparable with one another.

On the Sphere and Cylinder,
Book I

–Archimedes

Even though we are working with the whole number system, we are about
to prove a result about the counting numbers. We want to show that by
adding enough y’s together, we can make the result as large as we want.
Now, no matter how many 0’s we add, the result is still 0, so we restrict y to
be a counting number. Then it seems plausible that by adding enough y’s
together we can make the result arbitrarily large. A mathematical structure
in which this happens is Archimedian ordered.

According to the ideas which motivated our definition of multiplication,
adding k y’s together should be k · y. So, in effect, to say we have Archi-
median order is to say k · y can be made as large as desired by taking k
suitably big. More precisely, if y ≤ x, no matter how big x is, by taking k
suitably large, k · y will be bigger than x.

What we will actually prove here is a more precise version of this: not
only will k · y be bigger than x for some k, but there is a smallest k which
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will do. More precisely yet, we will show there is some q such that q+ · y is
bigger than x though q · y is not. In fact, the q is uniquely determined by
x and y.

Lemma 3.8.1 Let x and y be counting numbers. x+ · y > x.

Proof We know x+ > x. Also, since y is a counting number, y ≥ 1. Then
x+ · y ≥ x+ · 1 = x+ > x.

Theorem 3.8.2 Let x and y be counting numbers, with y ≤ x. There is a
counting number q such that q+ · y > x but q · y ≤ x.

Proof Let S be the following collection of counting numbers. Put n in S
if n · y > x. S is not empty since, by Lemma 3.8.1, x+ ∈ S. Then by the
well-ordering principle, Theorem 2.13.1, S has a smallest member, call it k.
Now 1 ·y = y ≤ x, so 1 /∈ S. But k ∈ S, so k 6= 1. Then k has a predecessor,
say k = q+. Then q+ is the smallest member of S.

Since q+ ∈ S, q+ · y > x. Since q < q+ and q+ is the smallest member of
S, q /∈ S. Then we don’t have q · y > x, so q · y ≤ x.

Exercises

Exercise 3.8.1 Show there is only one number q meeting the conditions
of Theorem 3.8.2. Hint: suppose there were two, say q and Q. Then:

q+ · y > x Q+ · y > x
q · y ≤ x Q · y ≤ x.

Now show contradictions follow from either of q < Q or q > Q.

3.9 Exact division

Just as we defined subtraction to be opposite to addition, we want to
define an operation of division to be opposite to multiplication. Recall, our
definition of subtraction was:

x− y is that unique z such that z + y = x.

In the same fashion, we may try

x÷ y is that unique z such that z · y = x.

The problem is, when will x÷y make sense? We know x−y makes sense
whenever x ≥ y. There is nothing quite as simple available for division, so
we simply say x÷ y makes sense whenever it makes sense.
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Definition 3.9.1 Let x and y be whole numbers. We say x is divisible by
y if there is one and only one z for which z · y = x. If there is such a z,
x÷ y is that z.

We consider some examples. First, is 6 divisible by 2? Well, z · 2 = 6
when z = 3. If no other value of z will work, then 6 is divisible by 2. But
we have the following general fact.

Lemma 3.9.2 Suppose z · y = x and z′ · y = x where y is not 0. Then
z = z′.

This Lemma tells us, if we are not trying to divide by 0, and we have
one candidate for x÷ y, it is in fact the only one so x÷ y is defined. Now,
continuing our example, 3 · 2 = 6, and by the Lemma, 3 is the only value
of z for which z · 2 = 6. Then 6 is divisible by 2, and 6÷ 2 = 3.

Next, is 6 divisible by 0? Is there some z for which z · 0 = 6? No, since
z · 0 = 0 no matter what z is. 6 is not divisible by 0.

More generally, no matter what x is, x is not divisible by 0.
Finally, is 5 divisible by 2? No, which we may show as follows. By simple

calculations, we have:

0 · 2 = 0, not 5
1 · 2 = 2, not 5
2 · 2 = 4, not 5
3 · 2 = 6, not 5.

And if z > 3, z · 2 > 3 · 2 so z · 2 is not 5. Thus, no matter what z is, z · 2
is never 5, so 5 is not divisible by 2.

Exercises

Exercise 3.9.1 Prove Lemma 3.9.2.

Exercise 3.9.2 Show 0 is not divisible by 0.

Exercise 3.9.3 Establish which of the following are defined, and for those
which are, produce a value:

1. 8÷ 4;

2. 9÷ 4;

3. 0÷ 5;

4. x÷ 1.
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3.10 Division with remainder

Suppose we try to see if 7 is divisible by 3. Well,

0 · 3 = 0 not 7
1 · 3 = 3 not 7
2 · 3 = 6 not 7
3 · 3 = 9 not 7

and from here on, things will be too big. 7 is not divisible by 3.
Suppose we revise the question. Even though we can’t fit an exact number

of 3’s into 7, what’s the most we can fit in? A glance at the list above shows
2 3’s will fit but 3 3’s won’t. The 2 3’s don’t exactly make up 7, they fall
short by 1. Then 2·3+1 = 7. The standard terms here are: 2 is the quotient,
1 is the remainder in our attempt to divide 7 by 3.

More generally, suppose we try to divide x by y, and suppose it turns
out we can’t. Well, let q be the largest number of y’s which will fit into x,
and let r be the amount by which q · y falls short of x. Then

q · y + r = x. (3.1)

Here q is the quotient and r is the remainder. A simple observation: the
remainder, r, must be smaller than y, since otherwise we could have fit
more y’s into x. That is,

r < y. (3.2)

It turns out that even when x is not divisible by y, there must still exist
a quotient q and a remainder r satisfying (3.1) and (3.2). And, moreover,
they are unique. There are some qualifications to be made, however. First,
we don’t want y to be 0. There are many reasons for this, an obvious one
being that if y is 0, no r can satisfy (3.2). Second, we want to allow the
possibility of a 0 remainder, which means we had exact division after all.
That way we don’t have to treat exact and non-exact division as separate
cases.

Now we state and prove a formal version of the above.

Theorem 3.10.1 Let x and y be whole numbers, with y 6= 0. There are
unique whole numbers q and r satisfying the conditions:

1. x = q · y + r;

2. r < y.

Proof There are two parts to the proof, the existence of q and r, and their
uniqueness. We establish uniqueness first.

I. Suppose we had two quotients, q and Q, and two remainders, r and
R. We show that, in fact, they are the same. Now q and r satisfy (3.1) and
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(3.2), as do Q and R. Hence:

x = q · y + r
r < y

and also
x = Q · y +R
R < y.

Now, x = q · y + r ≥ q · y (Theorem 3.4.3) so x ≥ q · y. Similarly x ≥ Q · y.
Also x = q · y + r < q · y + y = q+ · y so x < q+ · y. Similarly x < Q+ · y.
Then Exercise 3.8.1 says q = Q. Finally, x = q · y+ r and x = Q · y+R, so
q ·y+r = Q ·y+R. But q = Q, so q ·y+r = q ·y+R. Then by cancellation,
r = R.

This completes the proof of uniqueness.
II. Now we show q and r must exist. We consider two cases.
case 1) x < y,
case 2) x ≥ y.

The first case is not very interesting; we are dividing y into a smaller
number. So we go directly to case 2).

Case 2) x ≥ y. Now, y 6= 0, so y is a counting number. Since x ≥ y, x is a
counting number too. Then we may apply Theorem 3.8.2 on Archimedian
order. There is a counting number q such that q+ · y > x but q · y ≤ x.
Since x ≥ q · y, x − q · y is defined. Call it r. That is, x − q · y = r, from
which follows x = q · y + r. We must yet show r < y. Well, x < q+ · y but
x = q · y + r, so q · y + r < q+ · y = q · y + y so by cancellation, r < y. In
case 2) we have shown the existence of appropriate numbers q and r.

Exercises

Exercise 3.10.1 Complete the proof of Theorem 3.10.1 by showing in case
1) suitable choices for q and r exist.

Exercise 3.10.2 Use Theorem 3.10.1 to prove that 9 is not divisible by 4.
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Naming Numbers — Place
Value Notation

“I don’t rejoice in insects at all,” Alice explained, “because I’m
rather afraid of them – at least the large kinds. But I can tell you
the names of some of them.”

“Of course they answer to their names?” the Gnat remarked
carelessly.

“I never knew them to do it.”
“What’s the use of their having names,” the Gnat said, “if they

won’n’t answer to them?”
“No use to them,” said Alice; “but it’s useful to the people that

name them, I suppose. If not, why do things have names at all?”
“I ca’n’t say,” the Gnat replied.

Through the Looking Glass,
Chapter Three,

Lewis Carroll, 1871

4.1 Introduction

There is an unlimited supply of whole numbers. People don’t use them all
in their everyday affairs, but they do use so many that some system of
referring to them is a necessity. Over the course of human history many
systems for naming numbers have been tried. This is not the place to
review them. Today, however, virtually the whole world has settled on a
place-value system of names, using a base of 10. But other bases are also
in use for various special purposes. Computers do their work in base 2;
people who work with computers commonly use base 16, and sometimes
base 8; and until recently there was a group who advocated a switch in the
common system from base 10 to base 12.

Now the particular choice of a base, while having a practical effect, makes
no difference in theory. So we present place-value naming systems for all
bases. Partly this will allow you to appreciate the key features of the con-
ventional system, by seeing how these features work in unfamiliar settings.
Then, too, having many bases around provides us with a source of exercises.
Finally, as we noted above, bases other than 10 are in use today.

In a base n system one introduces special symbols, called digits, to denote
the first n whole numbers (from 0 to n − 1). Then one uses finite strings
or sequences of these digits to name all numbers, according to a certain
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convention. Then right at the start we are faced with two problems: what
is a digit, and what is a finite sequence. We take up these issues in order.

It is common, in educational circles, to distinguish between number and
numeral. A numeral is a symbol that we use to name a number. Thus the
symbol ‘1’, written as a vertical stroke, is used to name the first counting
number. It is the symbol that occurs in our discourse, not the number itself.
Just as when we say, “George has red hair,” we use a name for George; we
do not use George himself.

But if we try to follow up on this carefully, we find some difficulties. There
is only one symbol we ordinarily use to name the first counting number,
the symbol ‘1’. But ‘1’ may occur many times on a page. Since no single
occurrence is more fundamental than any other, which is the symbol? The
usual response is that there is one symbol, with many instances, and the
instances of the symbol are what we see on the page. But then, what is the
symbol itself that has all these instances? We are rapidly led to the position
that there is some class of mental concepts called symbols, but a symbol
is something different than any of the instances of it. In short, symbols
become abstractions much like numbers themselves.

Clearly there are difficulties here, and they go rather deep. Unless we
want this to become a treatise on philosophy, we had better avoid the
question of “what is a place-value name,” which first requires an answer to
the question, “what is a symbol.” We should concentrate on the question,
“How does a system of place-value names work?”

To handle this question, we don’t need to know what digits are, in any
philosophical sense. We only need to have some things that we can call
digits, and we can go on from there. We do the simplest thing, and choose
our digits from among the numbers themselves. Thus the base 10 digits,
for us, are the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and a base 10 name is
a finite sequence of these digits. This lets us carry out our investigation
without getting involved in endless complications.

Thus we have actually side-stepped the whole philosophical issue of what
symbols are in the interests of getting on with the mathematical side of
things.

A place-value name is a finite sequence or string of digits. Thus if we
write something like 216, most people understand we have in mind the
finite sequence consisting of the three digits, 2, 1 and 6, in that order. But
this means that, for this chapter, we need a new mathematical object, a
finite sequence. Now, it is possible to define a notion of finite sequence,
given the usual machinery of set theory. Indeed, there are several ways of
doing so, many of them quite natural. It is even possible to define something
meeting all the customary technical requirements of a finite sequence, using
just the machinery of arithmetic that has been developed thus far, though
most people would say this is not what they mean by finite sequence, even
if it does the job technically. But still, if we have all these alternatives, most
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of which bring in substantial set-theoretic equipment, what ‘real’ meaning
are we to assign to the notion?

Well, all the alternative ways of defining a notion of finite sequence have
certain features in common, and it is really these features that we make
use of in practice. For example, every finite sequence has a length; that
length is a counting number; and so on. Whatever it is that people ‘mean’
by finite sequence, they all agree on such things. So, we have decided not
to choose any of the many candidates for a definition of finite sequence
as fundamental. Rather, we will simply announce there are such things as
finite sequences, and their behavior meets certain conditions which we will
specify. In short, we treat the notion of finite sequence axiomatically, just
as we did the notion of counting number itself.

So, for this chapter, our assumed mathematical machinery is enlarged.
We have numbers, and we have finite sequences. We do not say what either
are, but we do say what we expect of their behavior.

4.2 Place–value names

Moses chose able men out of all Israel, and made them heads
over the people, rulers of thousands, of hundreds, of fifties, and of
tens.

–The Bible
Exodus 18:25

We introduce a system of base n names for whole numbers, for each
n ≥ 2, and we say how these names are to be thought of as naming numbers.
Though any n ≥ 2 is possible, our examples will generally involve bases 10,
the conventional one, as well as bases 2, 5 and 12.

The preceeding paragraph exemplifies a certain difficulty in writing a
chapter like this one. We are about to introduce place-value notation, yet we
just used it, when we wrote 10, 2, 5 and 12 above. You are going to have to
keep mentally balanced two levels of discourse. There is the subject matter
we are talking about, and there is the language we use in our discourse
about that subject matter. In the formal development thus far, in our
definitions and theorems and proofs, we have not used place-value notation.
This is as it should be; we have not yet formally introduced it or developed
its properties. But the language we use for our informal discourse, when
we talk about our subject, is Common English. And we think of this as
including the usual machinery for naming numbers; that is, common base
10 notation.

Our use of base 10 notation ‘on the outside’ is of no theoretical impor-
tance, of course; and we have been doing it all along, probably without it
being noticed. For instance, we have been calling our exercises things like
2.1, 2.2, 2.3, etc. Clearly we could have called them Tom, Dick, Harry, etc.,
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just as well, but this would not have been as convenient. However, in this
chapter, where place-value notation itself is being developed, a problem
could arise unless the reader is careful.

From now on, in our language of discourse we will feel free to use standard
number names. In our formal subject matter however, we will not do this.
Rather, we will carefully define place-value naming systems and develop
their properties.

Definition 4.2.1 Let n be a whole number with n ≥ 2. The base n digits
are those whole numbers < n.

Example The base 2 digits are 0 and 1. The base 5 digits are 0, 1, 2, 3,
4. The base 10 digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. For base 12 we need the
base 10 digits togther with two more. For this purpose we define t = 9+

and e = t+.

We said the base 2 digits were 0 and 1. This really should be proved.
But it is rather easy, given all the work of earlier chapters.

First, 0 + 2 = 2, hence 0 < 2 by the definition of < in Chapter Three §4.
Thus 0 is a base 2 digit. Likewise 1 + 1 = 1+ = 2, so 1 < 2. This means 1
is a base 2 digit.

On the other hand, suppose x is a base 2 digit, but x 6= 0 and x 6= 1.
We show this is impossible. Since x is a base 2 digit, x < 2. Then x ≤ 1.
Since x 6= 1 we have x < 1. Repeating, we get x ≤ 0. Since x 6= 0 we have
x < 0, and this violates the Trichotomy Law 3.4.5. Thus 0 and 1 are the
only base 2 digits.

In a similar way our assertions about the various other bases can be
verified.

From now on, any reference to base n presupposes it makes sense, namely
that n is a counting number with n ≥ 2. We will not say all this each time.

We introduce base n names: finite sequences of base n digits. For the
reasons given in the previous section, we do so axiomatically. Thus we
assume there is a collection of objects called base n names. We assume
each base n name has a length which is a counting number. And we assume
there is an operation of concatenation, intuitively the following of one name
by another to produce a longer name. If w and z are base n names, we
denote the result of concatenating them (in the order given) by wz. For
example, 216 and 38 are base 10 names (as we can show in a moment).
Concatenating them we get 21638.

Now, we assume all this machinery meets the following conditions, or
name axioms.

N1 Concatenation is associative (and thus we will not need parentheses to
indicate grouping).

N2 Every base n digit d is also a base n name of length 1.
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N3 If w is a base n name of length k and d is a base n digit then wd is a
base n name of length k+.

N4 If z is a base n name of length 1 then z is some base n digit, d.

N5 If z is a base n name of length k+ then there is a unique base n name
w of length k and there is a unique base n digit d such that z = wd.

Example We show 231 is a base 5 name of length 3.
a) 2 is a base 5 digit, hence 2 is a base 5 name of length 1 by N2.
b) Since 2 is a base 5 name of length 1, and 3 is a base 5 digit, 23 is a

base 5 name of length 1+ = 2 by N3.
c) Since 23 is a base 5 name of length 2, and 1 is a base 5 digit, 231 is

a base 5 name of length 2+ = 3 by N3 again.
Note that 231 is also a base 10 name. Indeed, it is a name in base n for

any n ≥ 4.

Now we introduce some useful terminology, that of last term and first
term.

Definition 4.2.2 Let z be a base n name. We define the last term of z as
follows. The length of z is a counting number, hence is either 1 or is k+ for
some k. If the length of z is 1 then by N4, z is some base n digit, d; in this
case, the last term of z is d. If the length of z is k+, then by N5, z = wd
for some unique name w and digit d; in this case the last term of z is d.

Example 231 is a base 5 name of length 3, so case 2 above applies. 231 is
23 concatenated with the digit 1, hence the last term of 231 is 1.

Definition 4.2.3 Let z be a base n name. We define the first term of z
as follows (again using the same two cases as in the previous definition). If
the length of z is 1 then z is some base n digit d; in this case the first term
of z is d. If the length of z is k+ then z = wd for some unique name w of
length k and digit d. In this case the first term of z is whatever the first
term of w is.

Notice that this will not generally tell us outright what the first term of
a name is, but it will let us calculate it with a little work.

Example 231 is a base 5 name of length 3, so its first term is whatever
the first term of 23 is. Then, 23 is a name of length 2, so its first term is
whatever the first term of 2 is. Finally, 2 is a name of length 1, so its first
term is 2. Thus the first term of 231 is 2.

Definition 4.2.4 We call a base n name proper if either it is of length 1,
or it is of length > 1 but its first term is not 0.

Example 231 is proper. 0231 is not proper. 0 is proper.
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Now we say how our names are to be thought of as naming numbers.
This, of course, is what we are really interested in. We need to be able to
distinguish between the name and the number being named. The notational
convention we follow is this. 217, say, can be thought of as a base 10 name.
As such, it is a finite sequence of digits of length 3 and is not, itself, a
number. But it can be thought of as naming a number, as we describe
below, in the base 10 system. We use (217)10 for that number. Thus 217 is,
for us, a finite sequence that names the number (217)10 in base 10 notation.
Now for the details.

The idea is that in base 10, say, each shift to the left by one place means
values jump by a factor of 10. Likewise, in base 2, each shift left one place
should multiply values by a factor of 2. Hence the term place-value, since
the value of a digit appearing in a name depends not only on the digit
itself, but also on how far to the left it occurs. Now in our formal definition
we only need to say all this for a single shift to the left, since a shift to the
left of many places is the result of many single shifts.

Definition 4.2.5 Let z be a base n name. We define (z)n using a familiar
two-case arrangement as follows. If the length z is 1, then z is a single
base n digit, d and we take (z)n to be the number d. If the length of z is
k+, then z = wd for some unique name w of length k, and digit d; then
(z)n = (wd)n = (w)n · n+ d.

Note that, as in the definition of first term, this does not say outright
what (z)n is, but rather it allows a value for (z)n to be calculated.

Example We have already seen that 231 is a base 5 name. Now we see
what number it names.

a) Since 2 is a base 5 digit, (2)5 = 2 by clause 1 of the definition.
b) Then (23)5 = (2)5 · 5 + 3 by clause 2, and by part a this is equal to

2 · 5 + 3.
c) (231)5 = (23)5 · 5 + 1 by clause 2 again, and by part b this is just

(2 · 5 + 2) · 5 + 1.
Actually we can go on a little with this example, using the distributive

law and the properties of exponents (and leaving out some of the paren-
theses).

(231)5 = (2 · 5 + 3) · 5 + 1
= 2 · 5 · 5 + 3 · 5 + 1
= 2 · 52 + 3 · 51 + 1 · 50

In our everyday place value system the string 10 names the base. Exer-
cise 4.2.3 says that this applies no matter what the choice of base. Likewise
Exercise 4.2.4 says that another familiar feature of the customary system
also carries over to all bases, namely: multiplying by the number that 10
names corresponds to adjoining another 0 to the name.
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In giving examples and exercises, it is often necessary for us to say what
base we have in mind. If so, we do this using standard base ten notation.
Thus we may write (216)12 to indicate we are naming in the base twelve
system. This convention should cause no theoretical problems.

If we have many numbers to discuss and all of them are named using
base n notation, it will often be convenient to drop the subscripts n, and
simply announce, “all these are numbers named in the base n system,” or
more simply, “we use base n notation throughout.” So, if we say something
like, “in base 5, 4+ = 10”, what we mean is (4)+

5 = (10)5. We use this
convention in several of the exercises.

Finally, we turn to the issue of proper names, as opposed to what we
might call improper ones.

Theorem 4.2.6 Let z be a base n name. Then so is 0z, and (0z)n = (z)n.

Proof We use induction on the length of z. That is, form a collection C of
counting numbers as follows. Put k into C provided, for every base n name
z of length k, (0z)n = (z)n. If we show every counting number is in C, it
will establish the theorem. Of course we do this by showing C is inductive.

Suppose z is a name of length 1. Then z must be a base n digit, say d.
Then, using both parts of the definition given earlier,

(0z)n = (0d)n
= (0)n · n+ d
= 0 · n+ d
= 0 + d
= d
= (d)n
= (z)n

Since z was an arbitrary name of length 1, it follows that 1 ∈ C.
Suppose k ∈ C. We show k+ ∈ C. Well, let z be any base n name of

length k+. Then z = wd where w is a name of length k and d is a digit. Since
w is of length k, and we are assuming k ∈ C, we have that (0w)n = (w)n.
But then

(0z)n = (0wd)n
= (0w)n · n+ d
= (w)n · n+ d
= (wd)n
= (z)n

Since z is an arbitrary name of length k+, it follows that k+ ∈ C.
Thus C is inductive, and we are done.

Exercises

Exercise 4.2.1 Show that for any two base n names z1 and z2, the length
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of the name z1z2 is the length of z1+ the length of z2. Hint: use induction
on the length of z2. See the proof of Theorem 4.2.6 if trouble arises.

Exercise 4.2.2 Explain why 0 and 1 are ruled out as bases.

Exercise 4.2.3 Show that (10)n = n for any base n.

Exercise 4.2.4 Let w be a base n name. Then w0 is also a base n name.
Show that (w0)n = (w)n · (10)n.

Exercise 4.2.5 Show the following:

1. (11)2 = (3)10;

2. (1)+
2 = (10)2;

3. (10)+
2 = (11)2;

4. (1)+
10 = (2)10;

5. (2)+
10 = (3)10;

6. (11)2 = (3)10.

Exercise 4.2.6

1. Using base 10 notation throughout, show that 100 = 102 and 1000 =
103;

2. Using base 2 notation through, show that 100 = 1010 and 1000 =
1011.

Exercise 4.2.7

1. Using base 10 notation throughout, show that 231 = 2 ·102 +3 ·101 +
1 · 100.

2. Using base 2 notation throughout, show that 1111 = 1 · 1011 + 1 ·
1010 + 1 · 101 + 1 · 100.

Exercise 4.2.8 Let w be a base n name of length c. Show (w)n < nc.
Hint: use induction on c, and recall that if x < y then x+ ≤ y.

Appendix

This is for those of you who read Chapter Two Section 2.5.
The definitions of first term and of (z)n are implicit definitions. As we

explained in Chapter Two, such definitions should be shown to be equiva-
lent to explicit ones in order to be sure something really is being defined.
Now in Chapter Two, our main tool for doing this was Theorem 2.5.1, on
Definitions. We can not use that now, because it talked about numbers,
while now we are interested in names. It is possible, however, to prove a
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similar theorem about names which we could use to ‘justify’ the implicit
definitions earlier in this section. The wording and proof of such a theorem
are similar to those of Theorem 2.5.1 and we omit them. We will feel free,
however, to make frequent use of implicit definitions in this Chapter.

4.3 Successor

There are some, king Gelon, who think that the number of the
sand is infinite in multitude. . . . Again there are some who, without
regarding it as infinite, yet think that no number has been named
which is great enough to exceed its multitude. . . . But I will try to
show you by means of geometrical proofs, which you will be able to
follow, that, of the numbers named by me. . . some exceed not only the
number of the mass of sand equal in magnitude to the earth. . . but
also that of a mass equal in magnitude to the universe.

–The Sand Reckoner
Archimedes

As we have known since childhood, counting is easy using place-value
names. That is, there is a simple algorithm or rule for turning a name of x
into a name of x+.

The rule for going from a base n name to a base n name for the next
whole number may be loosely stated as follows. Look at the right hand
digit. If there exists a bigger digit, replace the right hand digit by the
next bigger, then stop. Otherwise, replace it by 0, move left one place, and
repeat the process. We now want to state this a little more formally. In the
definition below, for each base n name z we define another base n name
which we denote zs, intended to name the successor to whatever z named.
zs is not to be read as an exponentiation; s is not a number. Both z and
zs are simply base n names.

Definition 4.3.1

1. If d is a base n digit then ds = d+ if d is not the biggest base n digit,
and ds = 10 if d is the biggest base n digit.

2. Let w be a base n name and let d be a base n digit. Then (wd)s =
w(d+) if d is not the biggest base n digit, and (wd)s = (w)s0 if d is
the biggest base n digit.

Example

1. In base 10, (433)s = 434.
Reason: since 3 is not the biggest base 10 digit, (433)s = 43(3+) =
434.
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2. In base 10, (499)s = 500.
Reason: since 9 is the biggest base 10 digit we have (499)s = (49)s0 =
(4)s00 = 4+00 = 500.

3. In base 5, (44)s = 100.
Reason: 4 is the biggest base 5 digit, so (44)s = (4)s0 = 100.

Now we show our method of naming successors always works. That is,
we show that if z is any base n name, then zs really does name the next
number after the one z names. Now, in base n, z names the number zn,
and so the next number is (zn)+. We must show it is this number that is
named by zs. But again in base n, zs names the number (zs)n. So what we
must show is that (zs)n and (zn)+ are always the same.

Theorem 4.3.2 In base n, let z be any name; then (zs)n = (zn)+.

Proof By induction on the length of z.
If z is of length 1, it must be a digit, say d. Then we have two cases.
Case 1) d is not the biggest base n digit. Then d+ is also a base n digit,

so
(zs)n = (ds)n since z = d

= (d+)n by definition
= d+ since d+ is a digit
= (dn)+ since d is a digit
= (zn)+ since z = d.

Case 2) d is the biggest base n digit. Then d+ = n (why?) so by Exer-
cise 4.2.3, d+ = (10)n. Then

(zs)n = (ds)n since z = d
= (10)n by definition
= d+

= (dn)+ since d is a digit
= (zn)+ since z = d

We leave the induction step to you as an exercise.

There is an important ‘completeness’ result that follows easily now.

Corollary 4.3.3 Every whole number has a base n name.

Proof 0 has a base n name since in every base 0 is a digit, and (0)n = 0.
The same is the case with 1.

Now suppose k has a base n name, we show the same is true of k+. But,
if z is a base n name for k, by the previous theorem zs must be a base n
name for k+.

It follows, using induction, that every whole number has a base n name.
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Exercises

Exercise 4.3.1

1. In base 5, compute (34)s.

2. In base 2, compute (1011)s.

3. In base 12, compute (te)s.

Exercise 4.3.2 Complete the proof of Theorem 4.3.2 by giving the induc-
tion step.

Exercise 4.3.3 Write out a list of names for the first 20 counting numbers
in:

1. base 10;

2. base 5;

3. base 2;

4. base 12.

4.4 Comparing numbers

Our intellects are a good deal sharpened up here, in some ways,
and that is one of them. Numbers and signs and distances are so
great, here, that we have to be made so we can feel them – our old
ways of counting and measuring and ciphering wouldn’t even give us
an idea of them, but would only confuse us and oppress us and make
our heads ache.

–Captain Stormfield’s Visit to Heaven
Mark Twain

In Chapter Three we defined what it means for one whole number to be
greater than another. In fact, place-value notation makes possible an easy
test for the relative order of two numbers, by comparing their proper names.
We just use the following informal rules, in which we assume everything is
relative to base n, for some fixed n.

Rule 1 If two proper names are of different lengths, the longer name names
the larger number.

Rule 2 If two proper names are the same length, then locate the first term
(from the left) where the two names have different digits. The name with
the bigger digit there names the bigger number.
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Example This sort of thing should be quite familiar. In base 10, 231 names
a bigger number than 99 since 231 is of length 3 while 99 is of length 2,
which is smaller than 3. Likewise 7732 names a bigger number than 7719
because both are the same length, and agree in their first and second digits,
but differ in their third, where 7732 contains the larger digit of the two.

If we make use of names that are not proper, then both rules are special
cases of a single general rule.

General Rule If two names, proper or not, are the same length, then
locate the first term from the left where the two names have different
digits. The name with the bigger digit there names the bigger number.

It is obvious that Rule 2 follows from the General Rule, indeed it is
simply the General Rule when we only consider proper names. But Rule 1
also follows because of Theorem 4.2.6 that says we can always adjoin 0’s on
the left, that is, if z is a name, then 0z and z name the same number. Now
suppose we have two proper names, say z1 and z2, that are not the same
length. Say z2 is shorter. Rule 1 says z1 must name the bigger number.
But we can also argue as follows. Since z2 is shorter than z1, we can fill it
out with 0’s on the left to produce an equivalent name, 00 . . . 0z2, that is
the same length as z1, though it is no longer a proper name. Now, z1 was
longer than z2, so z1 must consist of more than a single digit. And z1 was
a proper name, hence z1 does not begin with 0. The name 00 . . . 0z2 is the
same length as z1, and does begin with 0. Thus the two names differ in the
very first term, and since 0 is the smallest digit (in any base) the General
Rule says z1 must name a bigger number than 00 . . . 0z2, hence than z2

itself.
Thus the correctness of the General Rule is all we need to establish. And

we do this in the following theorem.

Theorem 4.4.1 Suppose y and z are two base n names of the same length,
and y begins with a bigger digit than z. Also, let w be some base n name.
Then 1) (y)n > (z)n and 2) (wy)n > (wz)n.

Note Part 1 takes care of the case of two names differing at the very start.
Part 2 takes care of the case where the two names, here wy and wz, agree
for some initial string of digits, here string w, and then differ afterwards.
The two cases could be lumped together if we wanted to allow w to be any
string of base n digits including possibly the empty string.

Proof We use induction on the length of string y, or equivalently, z.
To start, suppose the length of y is 1. Then y and z must consist of single

digits, say y consists of d1, and z of d2. Since the first term of y is a bigger
digit than that of z, it must be that d1 > d2. Then we argue for Case 2 as
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follows (case 1 is much easier; check it).

(wy)n = (wd1)n
= (w)n · n+ d1

> (w)n · n+ d2 (Theorem 3.5.2)
= (wd2)n
= (wz)n.

Next, the induction step. Suppose the result is known for all names y
and z of length k. And suppose now that we have particular names y and
z of length k+, with the first term of y being bigger than that of z. Since
y is of length k+, y must be of the form y0a where y0 is a name of length
k, and a is a single digit. Thus y = y0a. Likewise since z is of length k+,
z must be of the form z0b where z0 is of length k and b is a digit. Thus
z = z0b. Further, the first terms of y and y0 must be the same, and the
first terms of z and z0 must be the same. Hence the first term of y0 must
be bigger than the first term of z0. Now, again presenting only the Case 2
argument, we have

(wy)n = (wy0a)n
= (wy0)n · n+ a

but a is a digit, hence a ≥ 0, so using Theorem 3.5.2,

(wy)n ≥ (wy0)n · n+ 0
= (wy0)n · n

Now y0 and z0 are names of length k and y0 begins with a bigger digit than
z0, hence we can use the induction hypothesis. Then

(wy0)n > (wz0)n.

so by Exercise 3.4.1
(wy0)n ≥ (wz0)+

n .

Then, using Theorem 3.5.3,

(wy0)n · n ≥ (wz0)+
n · n

and thus
(wy)n ≥ (wz0)+

n · n
= [(wz0)n + 1] · n
= (wz0)n · n+ 1 · n
= (wz0)n · n+ n.

Now b is a base n digit hence by definition n > b. So by Theorem 3.5.2,

(wy)n > (wz0)n · n+ b
= (wz0b)n
= (wz)n.

This concludes the induction step and completes the proof.
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There is an important and easy consequence of all this. Recall that in
Corollary 4.3.3 we showed every whole number had a base n name. If we
allow improper as well as proper names, every whole number has many
names. What we can show now, however, is that if we limit ourselves to
proper names only, then numbers have unique names, relative to a fixed
base, of course.

Corollary 4.4.2 In base n notation every whole number has exactly one
proper name.

Proof Suppose some whole number had two proper base n names. By Rule
1 the two names must be of the same length. Then by Rule 2 they must be
term by term the same, or else one would name a bigger number than the
other. It follows that the two names must be identical.

Exercises

Exercise 4.4.1 Rank in order the following list of base 2 names: 11, 101,
111, 10, 1111, 1101, 1011.

4.5 Addition

Clown: Let me see – every ‘leven wether tods; every tod yields
pound and odd shilling; fifteen hundred shorn, what comes the wool
to? . . . I cannot do’t without counters.

–The Winter’s Tale
Act IV Scene 17

Shakespeare

There are convenient algorithms, using place-value notation, for doing
all the elementary operations of arithmetic. In this section we discuss the
usual one for adding. The problem is, given base n names for two whole
numbers, to produce a base n name for their sum.

The usual addition algorithm tells us what to do with many-place names,
provided we know what to do with one-place names, that is, with the digits
themselves. So our first job is to produce an addition table for base n digits.
The following arrangement, given for base 2, is useful.

+ 0 1
0 0 1
1 1 10

The intention is that the bold face entry in the table above should rep-
resent 0 + 1; more generally, the entry in row x and column y should name
x+ y.
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The actual construction of such a table is quite simple. The definition
given in Chapter Three, namely x+0 = 0+x = x tells us how to fill in row
0 and column 0. Likewise, part of the definition in Chapter Two, namely
x+1 = x+, together with the algorithm for naming successors, allows us to
fill in the column headed by 1. Finally, the rest of the addition definition of
Chapter Two, namely x+y+ = (x+y)+ tells us how to complete a column
provided the one just to its left has been filled in. (This, of course, is not
needed for base 2).

If you do Exercise 4.5.1 you may notice that these tables all share a
feature with the one for base 2 presented earlier, that if a two-place name
appears at all, the left-hand digit was a 1. This always happens.

Lemma 4.5.1 In base n, when two digits are added, the result has a proper
name which either is a single digit or consists of two digits the first of which
is 1.

Proof Let b be the biggest base n digit. Then, using the discussion of order
in the previous section, it is enough to show that the sum of two base n
digits is always < (1b)n. Well, let d1 and d2 be two base n digits. Then
d1 < n and d2 ≤ b, so

d1 + d2 < n+ b
= 1 · n+ b
= (1)n · n+ b
= (1b)n.

Definition 4.5.2 We say the sum of two base n digits generates a carry if
a proper base n name for the sum consists of two digits (the first of which
must be 1, by the Lemma).

Example In base 2, 1 + 1 generates a carry. No other combination of base
2 digits does so.

Now we describe the algorithm for combining base n names consisting
of more than single digits. The chief features of this familiar algorithm
are these. We work from right to left. At each stage, we only consider one
‘column’ at a time. In that column we add the digits using our addition
table, then we adjust the result, or not, depending on whether there was
a carry generated by what we did in the previous column. If the result
is (named by) a single digit we write it down, move left one column and
repeat the process. If the result is (named by) more than one digit, we write
down the ‘units’ digit, remember to carry, move left one place, and repeat.

Now, whenever we are finished with a column, we never work with it
again. So when we move left one place it is as if we were ‘throwing away’
the old right-hand digits and shifting our attention to new right-hand digits
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of shorter names. Thus, in our formal statement of the algorithm below, it
is enough to say what to do with right-hand digits only. Also, taking a carry
into account is easy. The Lemma above essentially says that in adding two
numbers we never have more than a 1 to carry. And adding in an extra 1
is simply taking successor.

Now, our formal statement of the addition algorithm.

Addition Algorithm Let w1d1, w2d2 and w3d3 be base n names in which
d1, d2, and d3 are single digits. Then (w1d1)n+(w2d2)n = (w3d3)n provided:

1. if d1 +d2 generates no carry, d3 = d1 +d2, and (w3)n = (w1)n+(w2)n;

2. if d1 + d2 generates a carry, (w3)n = [(w1)n + (w2)n]+.

Example We use this formal statement to compute (or name in base 2)
(101)2 + (111)2. Since all our work is in base 2 notation, we leave off all
subscripts indicating base, to make reading easier.

To begin, set

1 0︸︷︷︸
w1

1︸︷︷︸
d1

1 1︸︷︷︸
w2

1︸︷︷︸
d2

.

Now d1 + d2 = 1 + 1 = 10, using the base 2 addition table given earlier.
Thus a carry is generated so case 2 applies. The result is w3d3 where d3 = 0
(the last term of 10) and w3 = (10 + 11)+. Thus the original problem of
adding 3-place numbers (that is, numbers with 3-place names) is reduced
to the problem of adding 2-place numbers.

We continue the calculation in a moment, but we pause to note that the
customary arrangement of the work thus far, on a printed page, is

1

1 0 1
1 1 1

0

Now we repeat the process to compute 10 + 11, after which we can take
the successor operation, or carry, into account to get (10 + 11)+, which is
what we really need. This time set

1︸︷︷︸
w1

0︸︷︷︸
d1

1︸︷︷︸
w2

1︸︷︷︸
d2

(Note that we are re-using our variables with different values.) Now d1 +
d2 = 0+1 = 1, again using the base 2 addition table. No carry is generated
so we use Case 1. Then 10 + 11 = w3d3 where now d3 = 1 and w3 =
w1 + w2 = 1 + 1. We still need to compute w3, but we can state that
10 + 11 = w31. Then, using the successor algorithm of §3, (and uniformly
writing a superscript + for a superscript of s, as Theorem 4.3.2 allows)
(10 + 11)+ = (w31)+ = w+

3 0.
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Earlier we determined that 101+111 = . . . 0 where . . . is a string of digits
representing (10 + 11)+. Well now we can fill this in a little more and say
101 + 111 = w+

3 00 where w3 = 1 + 1.
Again we pause to present the customary typographical arrangement of

the work thus far. It is

1 1

1 0 1
1 1 1

0 0

Finally, to complete the work we need w+
3 where w3 = 1 + 1. This time

we go directly to the addition table. 1 + 1 = 10, and by the successor
algorithm, (10)+ = 11. Thus 101 + 111 = w+

3 00 = 1100. And the usual
arrangement of the completed problem is:

1 1

1 0 1
1 1 1

1 1 0 0

Now we prove the correctness of the formal statement of the Addition
Algorithm. In practice, it is the less formal typographical arrangement of
the work that we assume you will use. We leave it to you to convince yourself
that the usual ‘by columns’ arrangement is simply the Formal Algorithm
in a handy abbreviated form.

Theorem 4.5.3 The algorithm for base n addition given earlier is correct.

Proof Curiously enough, we need some results from our discussion of divi-
sion with remainder in Chapter Three. Specifically we need Theorem 3.10.1.

Suppose we know that (w1d1)n + (w2d2)n = (w3d3)n. What we must
show is that the base n name w3d3 meets the conditions set out in the
statement of the Addition Algorithm given earlier. Now certainly

(w3d3)n = (w1d1)n + (w2d2)n
= [(w1)n · n+ d1] + [(w2)n · n+ d2]
= [(w1)n · n+ (w2)n · n] + [d1 + d2]
= [(w1)n + (w2)n] · n+ [d1 + d2] (1)

And also

(w3d3)n = (w3)n · n+ d3 (2)

Now we have two cases.
Case 1) d1 +d2 generates no carry. Then d1 +d2 is a digit, so d1 +d2 < n.

Now we use Theorem 3.10.1, taking x to be (w3d3)n and y to be n. It tells
us there are unique whole numbers q and r such that (w3d3)n = q · n + r
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and r < n. Now equation (1) says we can take q = (w1)n + (w2)n and
r = d1 + d2. Likewise, equation (2) says we can take q = (w3)n and r = d3.
Consequently, it must be that d3 = d1 + d2 and (w3)n = (w1)n + (w2)n.
Thus the correctness of Case 1 of the Addition Algorithm is verified.

Case 2) d1 +d2 generates a carry. By Lemma 4.5.1 then, d1 +d2 = (1d)n
for some base n digit d. Then, continuing equation (1) above,

(w3d3)n = (w1d1)n + (w2d2)n
= [(w1)n + (w2)n] · n+ [d1 + d2]
= [(w1)n + (w2)n] · n+ (1d)n
= [(w1)n + (w2)n] · n+ (1 · n+ d)
= [(w1)n + (w2)n + 1] · n+ d

= [(w1)n + (w2)n]+ · n+ d (3)

Now the correctness of Case 2 of the Addition Algorithm follows, just as
in Case 1), using Theorem 3.10.1 on equations (2) and (3). We leave any
necessary details to the reader.

Exercises

Exercise 4.5.1 Write out addition tables for the digits of:

1. base 5;

2. base 12;

3. base 10.

Exercise 4.5.2 Add, in base 2:

1. 101 + 110;

2. 111 + 11;

3. 1011 + 101.

Exercise 4.5.3 Add, in base 5:

1. 11 + 34;

2. 11 + 44;

3. 201 + 113;

4. 142 + 113.

Exercise 4.5.4 Add, in base 12:

1. 99 + 11;

2. te + 28;

3. tt0 + ee.
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4.6 Subtraction

There are several methods of subtraction using place-value names. We take
a brief look but leave much of the work to you.

Possibly the most common method used today is the one in which we
work column by column, rearranging the ‘top number’ by borrowing when
necessary. It is illustrated by the following base 10 example, in which we use
the standard typographical arrangements. Suppose we have the problem:

4 3 1
− 1 2 9

We cannot subtract in the righthand column as it stands, so we ‘borrow’
to produce:

2 11

4 3/ 1/
− 1 2 9

Now we can calculate each column independently of the others. For ex-
ample, 11−9 = 2 because, by the base 10 addition table, 2+9 = 11, and we
recall how subtraction was defined in Chapter Three. Using the addition
table backwards this way we get:

2 11

4 3/ 1/
− 1 2 9

3 0 2

Now, a proper statement of the algorithm involved is simple, following
the pattern begun for addition in the previous section.

Subtraction Algorithm Let w1d1, w2d2 and w3d3 be base n names in
which d1, d2 and d3 are single digits. Suppose (w1d1)n ≥ (w2d2)n. Then
(w1d1)n − (w2d2)n = (w3d3)n provided:

1. if d1 ≥ d2 then d3 = d1 − d2 and (w3)n = (w1)n − (w2)n;

2. if d1 < d2 then d3 = (n+ d1)− d2 and (w3)n = [(w1)n − 1]− (w2)n.

A second subtraction method sometimes taught is the borrowing-and-
paying-back method. For example, consider again the base 10 problem:

4 3 1
− 1 2 9

In this method, just like in the first one, we must borrow to modify the 1 in
the righthand column. But now, the quantity borrowed to turn the 1 into
11 is ‘paid back’ to the bottom number. Thus the problem is rearranged
into:
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11

4 3 1/
− 1 2/3 9

Then we work column by column as before.

Finally there is one other method of subtraction that is rarely taught
in elementary schools today, but which has considerable use in computer
design. For base 10 it involves 9’s complements and goes as follows.

In base 10, the 9’s complement of a digit d is that digit one can add to
d to produce 9. For example, the 9’s complement of 0 is 9, of 1 is 8, and so
on. Note that every base 10 digit has exactly one 9’s complement.

Now, consider again the base 10 problem

4 3 1
− 1 2 9

In this method we begin by replacing each digit in the bottom number by
its 9’s complement. Then we add. We get

4 3 1
+ 8 7 0
1 3 0 1

Next we take the successor of the result. In this case we get 1302. No matter
what the base 10 subtraction problem we started with, the result of this
step will begin with the digit 1. Now delete it. We get 302 and this is the
answer to the original subtraction problem.

One more thing needs to be said, however. This method only works if
the two names are of the same length. If the bottom one is shorter, adjoin
0’s on the left using Theorem 4.2.6 until both names are the same length.
Thus to compute:

21648
− 929

we would use the algorithm on

21648
− 00929

Note that this subtraction method actually converts the problem into
one of addition. Thus no separate notion of borrowing is necessary.

Rather than giving a formal statement of this algorithm and proving it
correct, we confine ourselves to a special case. In what follows, we work in
base 10 and we work with names of length 3. This is to keep the notational
clutter down. We think all the essential ideas of the method are adequately
displayed.
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Suppose abc and efg are two base 10 names of length 3 (so a, b, c, e, f
and g are base 10 digits), and suppose (abc)10 ≥ (efg)10. We use the 9’s
complement method on the subtraction problem:

a b c
− e f g

Let us write d for the 9’s complement of the digit d. Thus 2 = 7, for
example. Obviously d+ d = 9.

The first step in the subtraction algorithm is to replace each digit of the
bottom number by its 9’s complement, and add.

a b c

+ e f g

We get (abc)10 + (e f g)10. Next we take successor, getting

(abc)10 + (efg)10 + 1 (∗)

Now, by our methods of addition,

e f g
+ e f g

9 9 9

hence (e f g)10 = (999)10 − (efg)10 by definition of subtraction. Thus the
item labeled (∗) above is equal to (abc)10+[(999)10−(efg)10]+1. Using var-
ious properties of subtraction from Chapter Three, this can be rearranged
into [(abc)10 − (efg)10] + [(999)10 + 1]. Now, our methods of addition tell
us that (999)10 + 1 = (1000)10 hence, so far we have:

[(abc)10 − (efg)10] + (1000)10. (∗∗)

The final step of the algorithm is to delete the initial digit 1. Equivalently
(for our special case of starting with 3 place numbers), we reduce things by
(1000)10. This turns item (∗∗) into (abc)10 − (efg)10. In other words, the
9’s complement algorithm produced the subtraction result we were after.

The method works with any base, of course. In base 5 we would use 4’s
complements; in base 12, 11’s complements. The method is at its best in
base 2. There one would use 1’s complements. But the 1’s complement of
0 is 1, and of 1 is 0. Thus the step of introducing 1’s complements into the
bottom number simply amounts to switching 0’s and 1’s. In fact, this is
how computers (which work in base 2) generally subtract.
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Exercises

Exercise 4.6.1 Carry out the base 10 problem (431)10−(129)10, but using
the formal statement of the subtraction algorithm.

Exercise 4.6.2 In case 2) of the Subtraction Algorithm two subtractions
occur.

1. Prove that if d1 < d2 then (n+ d1)− d2 is a digit.

2. Prove that if d1 < d2 then [(w1)n − 1]− (w2)n is defined.

Hint: For each part, assume the contrary and derive a contradiction.

Exercise 4.6.3 Prove the Subtraction Algorithm is correct.

Exercise 4.6.4 Use the informal version, by columns, of the Subtraction
Algorithm to compute the following.

1. In base 5:

a) 14− 12,

b) 23− 4,

c) 211− 102,

211− 22;

2. In base 12 4t9e0− t371.

3. In base 2 10011101− 1100111.

Exercise 4.6.5 Give a formal statement of the subtraction algorithm in-
volving borrowing and paying back.

Exercise 4.6.6 Prove the correctness of the Algorithm given in answer to
Exercise 4.6.5.

Exercise 4.6.7 Use the borrow and pay back method of subtraction to
re-do Exercise 4.6.4.

Exercise 4.6.8 In base n, for any digit d, show there is exactly one digit
d such that d+ d = n− 1.

Exercise 4.6.9 Use the 2’s complement method to compute, in base 2:

1. 10011101− 1100111;

2. 10000− 111

3. 100001− 11100.
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4.7 Multiplication

Bunthorpe: Do you know what it is to yearn for the Indefinable,
and yet to be brought face to face, daily, with the Multiplication
Table?

–Patience,
W.S.Gilbert

There is a simple, familiar algorithm for multiplying numbers by using
their place-value names. And just as for addition, what it does is reduce
a problem involving many-digit names to a collection of problems each
involving single digits. How to multiply digits is simply learned, once and
for all. So we must begin by creating a base n multiplication table for each
n we are interested in. As one might expect, the simplest is for base 2, and
we present it by way of example.

× 0 1
0 0 0
1 0 1

To create a table for any base, all that is needed beyond addition, is the
definition of multiplication itself. That is, we need:

x · 0 = 0 · x = 0 (Chapter Three)
x · 1 = x

x · y+ = x · y + x (Chapter Two)

Now, the workings of the algorithm itself really all come down to a single
fact, and that in turn rests on little more than the distributive law. The
fact we need is this.

Theorem 4.7.1 Let wd be a base n name, in which d is a single digit.
And let x be any whole number. Then (wd)n · x = (w)n · x · (10)n + d · x.

Proof By definition (wd)n = (w)n · n + d. Also Exercise 4.2.3 says n =
(10)n. The Theorem now follows by using the distributive law.

In words, this essentially says that when we multiply by x we can do so
digit by digit, but each shift to the left one place sends things up by a factor
of (10)n. And we remind you that Exercise 4.2.4 says that multiplying by
(10)n is just adjoining a 0 to the right hand end of the name. Now let us
see how this works in practice.

Suppose we have a base 5 multiplication problem in which one of the
numbers has a single digit name. We will take care of the more general
case shortly. And we assume you have a base 5 multiplication table handy.
Say we have the problem (243)5 · 4. By repeated use of the theorem above,
and the multiplication table, we get:
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(243)5 · 4 = (24)5 · 4 · (10)5 + 3 · 4
= (24)5 · 4 · (10)5 + (22)5

= [(2)5 · (10)5 + 4 · 4] · (10)5 + (22)5

= (2)5 · 4 · (10)5 · (10)5 + 4 · 4 · (10)5 + (22)5

= (13)5 · (10)5 · (10)5 + (31)5 · (10)5 + (22)5

= (1300)5 + (310)5 + (22)5

Now we have reduced things to a base 5 addition problem. Here we leave
out all details since they were covered in §5. The sum is (2132)5.

This work can be arranged on a printed page in more familiar fashion
thus:

2 4 3
× 4

2 2
3 1 0

1 3 0 0
2 1 3 2

In base 10, though, the partial products are seldom written down, and the
addition is done in the head.

Now, suppose we have two many-digit names to work with. Say we have
the base 5 problem (243)5 · (42)5. Well, we again use the theorem. But,
relying on the commutativity of multiplication, we use it this time to ‘break
up’ the right-hand factor. We get (243)5 ·(42)5 = (243)5 ·4·(10)5 +(243)5 ·2.
Now we just worked out that (243)5 · 4 = (2132)5. In a similar way we
can calculate that (243)5 · (2) = (1041)5. Hence we have (243)5 · (42)5 =
(2132)5 · (10)5 + (1041)5 = (21320)5 + (1041)5. And this sum works out to
(22411)5. Of course, the customary arrangement of this is:

2 4 3
× 4 2

1 0 4 1
2 1 3 2 0
2 2 4 1 1

(though in the second partial product, the final 0 is not generally written,
but rather one just shifts everything left one place.)

Exercises

Exercise 4.7.1 Write out multiplication tables for the digits of:

1. base 5;

2. base 12;

3. base 10.
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Exercise 4.7.2 In base 5, calculate 24 · 32 and 103 · 21.

Exercise 4.7.3 In base 2, calculate 1101 · 111 and 10101 · 11110.

Exercise 4.7.4 In base 12, calculate:

1. 99 · 99;

2. tet · 28;

3. tt · ee.

4.8 Division

The usual division algorithm using place-value names is quite easy to
present on a theoretical level. It is nothing more than the multiplication
algorithm run in reverse. Consqeuently all we do is give an example. That
should suffice.

If we want to divide y into x, where y 6= 0, Theorem 3.10.1 says it can
be done, and in only one way. That is, there is a unique quotient q and a
unique remainder r meeting the conditions:

x = q · y + r

r < y.

Now in the proof of that theorem it is clearly seen that the right choice
for q is simply the largest number y such that q · y ≤ x. This is the guiding
principle behind what follows. Suppose we want, in base 10, to divide 528
into 192200. What we will do is find the largest number q such that q ·528 ≤
192200. All the work that follows is in base 10 notation.

Our rules for comparing numbers easily tell us that 1000 is the smallest
4-place number. (That is, it is the smallest number whose proper name has
4 places.) And 1000 ·518 = 10 ·10 ·10 ·528 = 528000 (using Exercise 4.2.4).
This is bigger than 192200. Consequently q can not be 4-place; it must be
3-place or less.

Now we can think of what follows as a puzzle. We want digits to put in
the blanks of the following multiplication so that the answer is as large as
possible while not being larger than 192200.

5 2 8
×

. . . . . .

. . . . . .

. . . . . .

. . . . . .
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Our rules for comparing numbers have us begin by looking at the left-
hand digits first. Consequently, if we want the largest number possible, we
should begin by filling the left-hand blank (called the hundreds place, in
this case) by the largest digit we can.

We can proceed by trial and error. Say we try 4. Then, by the methods
of multiplication discussed in the previous section, we can be certain of at
least part of the multiplication arrangement, namely:

5 2 8
× 4

. . . . . .

. . . . . .
2 1 1 2 0 0

Now, whatever the other partial products are, they will all add up to at
least 211200, which is too big, since we are aiming at 192200.

Continuing trial and error shows 3 is the largest digit we can use. So far
our (incomplete) multiplication looks like this:

5 2 8
× 3

. . . . . .

. . . . . .
1 5 8 4 0 0

Now, this partial product accounts for 158400 of the 192200 we had to
work with. Consequently we have

1 9 2 2 0 0
− 1 5 8 4 0 0

3 3 8 0 0

left to distribute between the other two partial products.
We now move right one place and try to fill the next digit. We do so by

repeating the whole process all over again, but now our goal is to be as big
as possible without exceeding 33800, since this is all we have left to take
care of. Now, let us simply rearrange the work thus far into a more familiar
pattern.

3
528)192200

1584
33800

You should recognize all the parts here as having occurred earlier, though
somewhat scattered about. And we think this is far enough to carry this
example. Our point is: the usual division algorithm is nothing more than
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a convenient typographical arrangement of the usual multiplication algo-
rithm ‘run backwards’.

Division in base 2 is particularly simple as, at each stage, we have only
0 and 1 to try.

Exercises

Exercise 4.8.1 In base 2:

1. divide 101 into 111001;

2. divide 101 into 111111.

3. For parts 1 and 2, check your work by showing that multiplying by
the quotient and adding the remainder produces what it should.

4.9 Changing bases

We have been considering many bases, so a simple method of converting
from one base to another is of interest. If the numbers involved are not very
big, one can convert by simply counting in two bases simultaneously, thus
generating a conversion chart or table for the bases in question. It was by
this method that we concluded (11)2 = (3)10 in Exercise 4.2.5. Similarly,
if you did Exercise 4.3.3, you know how to convert between bases 10, 5, 2
and 12 for the first 20 numbers. What we need now are methods that work
conveniently when large numbers are involved.

Actually, we present two methods of converting a base n name into an
equivalent base k name. In both, a certain amount of calculation is neces-
sary. The difference between the two methods, on a practical level, is that
in one it is most natural to conduct the calculations using base k notation,
and in the other, using base n notation.

Converting from base n to base k Method One To use this method
we must first know how to name each number ≤ n in base k. That is, we
need base k names for each base n digit and for the base n = (10)n itself.
We can do this by the counting method outlined above.

Thus going from base 12 to base 10 we need the following information.

(0)12 = (0)10

(1)12 = (1)10

(2)12 = (2)10

(3)12 = (3)10

(4)12 = (4)10

(5)12 = (5)10

(6)12 = (6)10

(7)12 = (7)10

(8)12 = (8)10

(9)12 = (9)10

(t)12 = (10)10

(e)12 = (11)10

(10)12 = (12)10
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Now, continuing our presentation of Method One, we give the reduction
step. This reduces the problem of converting a given base n name into
base k to the problem of converting a shorter base n name into base k.
Continued applications of this reduction step brings us down to the level
of converting length 1 names. But these are just the base n digits, and we
are assuming we know how to convert those.

Let wd be a base n name, where d is a base n digit. Essentially by
definition we have:

(wd)n = (w)n · (10)n + (d)n.

Now, suppose we had base k names for all the terms on the right in this
equation, namely for (w)n, for (10)n and for (d)n. Then we could combine
them as directed, using the adding and multiplying algorithms that work
with base k names. The result would be a base k name for (wd)n. But, in
fact, we are assuming we have base k names for d (a base n digit) and for
(10)n. All we need is a base k name for (w)n. But w is a shorter name than
wd, the name we began with. This is the reduction step we spoke of earlier.

Example Convert (2te)12 to base 10. We use the conversions above. Now:

(2te)12 = (2t)12 · (10)12 + (e)12

= (2t)12 · (12)10 + (11)10

So the problem has been simplified to the conversion of (2t)12. Iterating
the process we have:

(2t)12 = (2)12 · (10)12 + (t)12

= (2)10 · (12)10 + (10)10

and now, carrying on calculations in base 10 we get

= (24)10 + (10)10

= (34)10.

Consequently
(2te)12 = (2t)12 · (12)10 + (11)10

= (34)10 · (12)10 + (11)10

= (408)10 + (11)10

= (419)10.

Notice that all calculations were conducted in base 10 notation, that is, in
the base we were converting to.

Converting from base n to base k Method Two
This method is a sort of dual to the previous one. This time we assume we
have base n names for the base k digits and for k itself. Then, as before,
there is a reduction step, showing how to turn a conversion problem into a
simpler conversion problem; this time into one involving smaller numbers.
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Suppose we have a base n name, say z. The problem is to find a base k
name for the number (z)n. Now, say wd is such a name, where d is a base
k digit. That is, suppose (z)n = (wd)k. We show how to determine d.

By definition, (wd)k = (w)k · k + d. Since d is a base k digit, d < k.
But this is exactly the setup for long division. Theorem 3.10.1 tells us that
(w)k must be the quotient, and d the remainder on dividing (wd)k by k.
But quotient and remainder are independent of the system of notation in
which calculations are carried out. Let us do the calculations in base n.
That is, we divide (wd)k, which is just (z)n, by k, and we are assuming we
have a base n name for that. The remainder must be less than k, hence
must be a base k digit, though we get a base n name for it. But we are
assuming knowledge of how the base k digits are named in base n. Thus,
d has been determined.

What is left? We wanted the string of digits wd. We have determined
d itself. But we also know the value (w)k; it is simply the quotient of the
division carried out above. Thus the problem has been simplified, since
(w)k is a smaller number than (wd)k was.

In short, divide the number by k; the remainder gives us the right hand
digit in base k. But the quotient, (w)k above, is the ‘rest’ of the number,
so we may iterate the process with that in place of the original value. Thus
we conduct successive divisions, each time dividing k into the quotient of
the previous step. The successive remainders give us the desired digits of
the base k name, in right-to-left order.

Example Convert (419)10 to base 12. Well, we simply keep dividing suc-
cessive quotients by 12, doing all the work in base 10 notation. We get:

34
12)419

36
59
48
11

2
12)34

24
10

0
12)2

0
2

Now the successive remainders are 11, 10, 2. Writing these as base 12 digits,
we have e, t, 2. Arranging these from right to left we get the base 12 name
2te. Thus (419)10 = (2te)12.
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Notice that all calculations were conducted in base 10 notation; that is,
in the base we were converting from.

Exercises

Exercise 4.9.1 Find base 10 names for:

1. (101101)2;

2. (7te)12.

Exercise 4.9.2 Convert (324)10 to:

1. base 5;

2. base 2.

Exercise 4.9.3 Use the method of repeated division and convert (324)10

to base 5, and to base 2.

The examples presented above involved base 10, which is the most fa-
miliar to us. The conversion methods presented require calculating ability
in either the base we are coming from or the base we are going to. If nei-
ther of them is base 10, you may find it simplest to go through 10 as an
intermediate step. That is, to go from base n to base k, first go from n to
10 using Method One, then from 10 to k using Method Two. This way all
calculations can be carried out in base 10 notation. There is no theoretical
necessity for going through base 10; it is merely a matter of convenience.

Exercise 4.9.4

1. Convert (241)5 into base 2.

2. Convert (2et)12 into base 5.

Exercise 4.9.5 Carry out an addition, subtraction, multiplication or di-
vision problem in some base other than 10, then check your work by con-
verting the problem and its answer into base 10 and seeing if it is correct
there.

The next several exercises are almost recreational in character. Several
are taken from Chrystal’s classic work, Algebra, subtitled, an elementary
text-book for the higher classes of secondary schools and for colleges, a book
first published in 1886, and with additions, in 1904.

Exercise 4.9.6 Expressed in base n, (79)10 becomes (142)n. Find n.

Exercise 4.9.7 A 3 digit name in base 7 notation has its digits reversed
when translated into base 9. Find the digits.

Exercise 4.9.8
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1. Show, in base 10, the difference between the square of a two digit
number, and the square of the number formed by reversing the digits,
is divisible by 99.

2. Generalize this to base n.

Exercise 4.9.9

1. Show the following base 10 number trick is correct. Take any 3 digit
number whose first digit is bigger than its last digit (say 532). Reverse
the digits and subtract the result from the orginal number (in our
example, 532 − 235 = 297). Take the result, reverse the digits, and
add (in our example, 297 + 792 = 1089). Show the result is always
1089.

2. Show that in any base the result is always given by 1100− 11.
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The Rational Number System
Giulia: It’s quite simple. Observe. Two husbands have managed to
acquire three wives. Three wives — two husbands. (Reckoning up)
That’s two-thirds of a husband to each wife.
Tessa: O Mount Vesuvius, here we are in arithmetic! My good sir,
one can’t marry a vulgar fraction!
Giulia: You’ve no right to call me a vulgar fraction.
Marco Palmieri: We are getting rather mixed.

–The Gondoliers
W. S. Gilbert

5.1 Introduction

We have, so far, discussed numbers for counting. Now we discuss numbers
for measuring. It turns out that this is a new kind of number, but one that
can be defined in terms of whole numbers, so new axioms are not needed,
only appropriate definitions. And to motivate these definitions we discuss
measuring, just as in Chapter Two we dicussed counting.

In the real world, exact measurement has no meaning. Dimensions change
with temperature. Yardsticks are subject to wear. We do the best we can,
but knock a few atoms off the edge of a chair and we will never notice it. All
real measurements are only approximate things. So, if we want to study
measurement from a mathematical point of view, we are going to have
to idealize the situation. We want to talk about objects that have fixed,
well-defined lengths. We want to talk about objects that can be divided
as finely as we want, unlike real yardsticks which, on too fine a division,
become sawdust. What we actually talk about is line segments.

We assume you have some intuitive feeling for the geometric behavior of
line segments, and we rely on this in our discussions. But these discussions
are only meant to motivate our definitions. They are not proofs, and so
no formal development of geometry is given. The properties we claim for
addition, say, are true because we prove them, based on our definition of
addition. But addition is of interest to us because of its intuitive connection
with measurement.

For this chapter, all whole number names are base 10, unless another
base is specifically indicated.
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5.2 Fractions

...though from the magnitude of the figure it might at first deceive
a landsman, yet the slightest consideration will show that though
seven hundred and seventy-seven is a pretty large number, yet when
you come to make a teenth of it, you will then see, I say, that the
seven hundred and seventy-seventh part of a farthing is a good deal
less than seven hundred and seventy-seven gold doubloons; and so I
thought at the time.

–Moby Dick
Herman Melville

We begin our discussion of measuring line segments by choosing a stan-
dard length. Say we choose:

We call this a Unit length, or just a Unit.
If we say line segment A is 3 Units, we simply mean 3 of these Unit

lengths exactly fit into A.

A

Similarly for 4 Unit line segments, 5 Units, and so on.
But, for measuring certain line segments, our Unit may be too gross.

Some line segments may fall between, say, 3 Units and 4 Units. We need a
finer measure. So, we divide our Unit up into smaller pieces. We take them
all to be of the same size, but the number of them can be as large as we
want. Say we divide our Unit into 5 pieces.

Unit

Then each piece is a 5th (of the Unit) Similarly for 6th, 7th, etc. (English
usage has us write 3rd instead of 3th, and half or 2nd for 2th.)

Now, in effect, we can use 5th as a new standard length. We may say line
segment B is 7 5th’s if exactly 7 of our 5th’s fit into it.

B
5th

Let us say a line segment, C, is measurable if C is k nth’s (of our Unit)
for some k and some n. We leave open the question of whether all line
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segments are measurable or not, and we concentrate on those which do
turn out to be.

Suppose line segment D is measurable. Say it is 9 7th’s. We need a
convenient way of saying this. The two numbers 9 and 7 must be involved,
and we must be able to tell which number represents divisions of our Unit
and which is the number of those divisions which fit into D. The world at
various times has used many different devices for indicating this in writing.
One ancient Greek method did the equivalent of writing 9 7’. In English,
we would write ”nine sevenths.” The technical symbol generally adopted in
the world today for this purpose is the fraction, in this case 9

7 . (Sometimes
this is written as 9/7, for typographical convenience.) Mathematically this
is just an ordered pair, consisting of 9 and 7 in a particular order.

In the fraction 9
7 , it is customary to call 7 the denominator, indicating

the denomination, or size, of our measure, in this case 7th. The 9 is called
the numerator, indicating the number of 7th’s which fit into D. The word
fraction itself is akin to fracture. Indeed, at one time fractions were also
called broken numbers, for obvious reasons, contrasting with whole numbers.

In summary, if we have the situation

Unit
7th of Unit

D

we say D is 9
7 Unit.

When we studied numbers for counting we found that 0 played a special
role. It is reasonable to ask how it behaves in fractions.

Consider first the symbol 0
7 ; what meaning can be assigned to it? It

tells us to divide our Unit into 7 parts, but to use none of them. 0
7 is the

appropriate symbol to use if it turns out we have nothing to measure, just
as we use 0 when we have nothing to count. By the way, 0

8 or 0
6 would

do quite as well as 0
7 ; they all tell us we don’t need any of our lengths to

measure what we have, that is, we have nothing to measure.
Now consider the symbol 9

0 . It tells us to divide our Unit length into 0
parts. But our Unit is in 1 piece to begin with; if we divide it up we will
get more than 1 piece. No matter how we chop it up, we can never divide
our Unit into 0 pieces. The symbol 9

0 tells us to do something which is not
possible, so we say it is meaningless, and we do not allow it as a fraction.

Definition 5.2.1 A fraction is an ordered pair of whole numbers, by cus-
tom written a

b , in which b 6= 0.

A convention that will save us much writing: whenever we write a
b we

mean it is a fraction, and so b 6= 0. We will not use the symbol otherwise.
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Exercises

Exercise 5.2.1 Suppose line segment A is 3 Units long. How would this
be said using fractions?

5.3 Equivalence of fractions

Suppose line segment A is 3
4 Unit. That is,

Unit
4th

A

Now, suppose we divide our Unit into twice as many parts (by dividing
each 4th into two). Then twice as many of them will be needed to fill out
A.

Unit
A

This means that A is also 6
8 Unit.

Similarly, if we divide our Unit into three times as many parts (by di-
viding each 4th into 3 parts), we will need three times as many of them to
make up A.

Unit
A

Then A is also 9
12 Unit.

More generally, if we divide our Unit into n times as many parts (getting
4 · n of them) we will need n times as many of them to make up A (in this
case 3 ·n of them). Then A is also 3·n

4·n Unit. So, when we measure A, there
is no single fraction we must come up with; 3

4 or 6
8 or 9

12 or 3·n
4·n all will

serve. More generally yet, if line segment B is a
b Unit, it is also n·a

n·b Unit,
for any counting number n.

Let us, informally, say two fractions are interchangable if they represent
measurements of the same line segment. Thus 6

8 and 9
12 are interchangable.

And by arguments like the above, a
b and n·a

n·b are interchangable. What we
need is a general test for being interchangable, so we can recognize it by
just looking at the fractions, without going back to line segments.

Suppose a
b and c

d are interchangable fractions. Then they both turn up
in measuring the same line segment, say B.
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Unit
B

Thus B is a
b Unit, and also c

d Unit. Now a
b and n·a

n·b are interchangable for
any counting number n, in particular, for n = d. That is, a

b and d·a
d·b are

interchangable, so B is also a·d
b·d Unit. Similarly c

d and b·c
b·d are interchangable,

so B is also b·c
b·d Unit. B is both a·d

b·d Unit and b·c
b·d Unit. Then if we divide

our Unit into b · d pieces, either a · d or b · c of them will exactly fit into
B. But intuition tells us only one quantity of them will make up B. So, it
must be that a · d = b · c.

We have given an intuitive argument that, if ab and c
d are interchangable,

then a · d = b · c. Now let us argue that this works backwards as well.
Suppose a·d = b·c, and consider the fractions a

b and c
d . Now, ab and a·d

b·d are
interchangable. Similarly, cd and b·c

b·d are interchangable. But, since a·d = b·c,
then a·d

b·d and b·c
b·d are the same fractions. Then a

b and c
d are interchangable

with the same thing, so, intuitively, they must be interchangable with each
other.

We have informally shown that a
b and c

d will be interchangable precisely
if a · d = b · c. This provides a reasonable definition of a formal counterpart
to interchangability.

Definition 5.3.1 Let a
b and c

d be fractions. We say a
b and c

d are equivalent
if a · d = b · c. If a

b and c
d are equivalent we write a

b ∼ c
d .

Remark We only write a
b = c

d if a
b and c

d are the same fraction, that is, if
a = c and b = d. Then 1

2 = 2
4 is not true. But 1

2 ∼ 2
4 is true since 1 ·4 = 2 ·2.

Equivalence is of interest to us because it intuitively corresponds to the
notion of interchangability, which has to do with measurement. But the
definition of equivalence is in terms of whole numbers and multiplication,
and it is what must be used in proofs.

Theorem 5.3.2 a
b ∼ n·a

n·b for any counting number n.

Theorem 5.3.3 The notion of equivalence has the following properties:

1. reflexive: a
b ∼ a

b ,

2. symmetric: if a
b ∼ c

d then c
d ∼ a

b ,

3. transitive: if a
b ∼ c

d and c
d ∼ e

f then a
b ∼ e

f .

Proof (of part 3)
Suppose a

b ∼ c
d and c

d ∼ e
f . Then by definition, a ·d = b ·c and c ·f = d ·e.

From the first of these, a ·d ·f = b ·c ·f and from the second b ·c ·f = b ·d ·e.
Combining these equalities gives us a · d · f = b · d · e. Now d 6= 0 since it
is on the bottom in c

d , so we can cancel it, getting a · f = b · e which says
a
b ∼ e

f .
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Exercises

Exercise 5.3.1 Which of the following are true?

1. 3
4 ∼ 9

12

2. 17
32 ∼ 18

32

3. 18
32 ∼ 9

16 .

Exercise 5.3.2 Prove Theorem 5.3.2.

Exercise 5.3.3 Prove parts 1 and 2 of Theorem 5.3.3.

5.4 Rational numbers

Suppose line segment A is 3
4 Units. That is

Unit
A

Then, as we saw in the last section, A is also 6
8 Units, 9

12 Unit, and so on.
Each of these represents a different process by which A has been measured,
but they all describe the same length. Any of 3

4 , 6
8 , 9

12 , etc. is equally correct
as a description of the length of A, and none is more basic than any other.
In a sense, it is the collection { 3

4 ,
6
8 ,

9
12 , . . .} that fully represents the length

of A, since it embodies all the different special techniques for using our Unit
to measure A. If it is length, rather than the process of measurement that
we want to study, it is this collection we should work with. And so we give
it, and other similar collections, names, and we develop an appropriate
theory for them. We note that { 3

4 ,
6
8 ,

9
12 , . . .} is the collection consisting

of precisely those fractions equivalent to 3
4 (or to 6

8 , or to 9
12 , etc.). This

suggests the following.

Definition 5.4.1 Let a
b be a fraction. By the rational number correspond-

ing to a
b we mean the collection consisting of all those fractions equivalent

to a
b . We write

[
a
b

]
to denote this collection.

Remark The word ‘rational’ comes from the Latin word ‘reri’, and its
past participle ‘ratus’. The Latin word means to think, or estimate. One
of its descendants is the term ‘rational’ for ‘able to think.’ In the Middle
Ages the Latin word was commonly used to mean ‘computation.’ From it
also comes our word ‘ratio’, which is closely related to ‘rational’ as we are
using it.
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Our definition says x
y ∈

[
a
b

]
precisely when x

y ∼ a
b . For example, by

Theorem 5.3.3, a
b ∼ a

b , so a
b ∈

[
a
b

]
. Similarly, by Theorem 5.3.2, a

b ∼ n·a
n·b

so a
b ∈

[
n·a
n·b
]
.

Continuing from earlier,
[

3
4

]
= { 3

4 ,
6
8 ,

9
12 , . . .} and

[
6
8

]
= { 3

4 ,
6
8 ,

9
12 , . . .}

which means
[

3
4

]
=
[

6
8

]
. The following is a general statement of this phe-

nomenon.

Theorem 5.4.2 a
b ∼ c

d if and only if
[
a
b

]
=
[
c
d

]
.

Remark In words this says equivalent fractions determine the same ra-
tional numbers, and conversely. This is as it should be since, intuitively,
equivalent fractions represent measurements of the same line segment, and
it is the length of this line segment that the rational number is intended to
represent.

Proof Since the theorem is an ‘if and only if’ statement, the proof has two
parts.

I. Suppose
[
a
b

]
=
[
c
d

]
. By Theorem 5.3.3, a

b ∼ a
b , so a

b ∈
[
a
b

]
. But[

a
b

]
=
[
c
d

]
; they are the same collections. Since a

b ∈
[
a
b

]
, we have a

b ∈
[
c
d

]
.

This means a
b ∼ c

d .
II. Suppose a

b ∼ c
d . We show

[
a
b

]
and

[
c
d

]
are the same collections, by

showing they have the same things in them.
Suppose x

y ∈
[
a
b

]
. We show x

y is also in
[
c
d

]
. Well, since x

y ∈
[
a
b

]
, xy ∼ a

b .
We are given that a

b ∼ c
d . By Theorem 5.3.3 (transitivity) x

y ∼ c
d and so

x
y ∈

[
c
d

]
.

We leave the rest to you as an exercise.

Remark 1
2 6= 2

4 . They are different fractions, and represent different mea-
suring processes. 1

2 ∼ 2
4 since 1 · 4 = 2 · 2. Then informally 1

2 and 2
4 are

measurements of the same line segment. By the theorem above,
[

1
2

]
=
[

2
4

]
,

the rational numbers which correspond to 1
2 and 2

4 , are the same.

Exercises

Exercise 5.4.1 Complete this proof of Theorem 5.4.2 by showing that if
x
y ∈

[
c
d

]
then x

y ∈
[
a
b

]
.

Exercise 5.4.2 Which of the following are true:

1.
[

3
4

]
=
[

9
12

]
,

2.
[

17
32

]
=
[

18
32

]
,

3.
[

18
32

]
=
[

9
16

]
.

Exercise 5.4.3 The collection of all fractions with 0 on top is a rational
number. Show this as follows. By definition,

[
0
1

]
is a rational number. Show

it is exactly the collection of fractions with 0 on top by showing:
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1. if x
y ∈

[
0
1

]
, then x = 0;

2. if x = 0 then x
y ∈

[
0
1

]
.

Exercise 5.4.4 The collection of all fractions with top and bottom equal
is a rational number. Show this as follows. By definition,

[
1
1

]
is a rational

number. Show it is exactly the collection of fractions with top and bottom
equal by showing:

1. if x
y ∈

[
1
1

]
, then x = y;

2. for any counting number x, xx ∈
[

1
1

]
.

5.5 Addition of fractions

Suppose we have two line segments, A and B, and suppose we have mea-
sured each of them separately. Say A is a

b Units and B is c
d Units. Now

suppose we put A and B together.

A B

Unit

If we want the length of the combination, must we measure all over again,
or is there a way of calculating it from a

b and c
d?

We begin with a simple example, one for which fractions are not really
needed. Say A is 3 Units and B is 2 Units.

A B

Unit

Then it is clear that A and B are 5 Units, that is, 3 + 2 Units.
Next, a slightly more complicated example. Say A is 3

7 Unit and B is 2
7

Unit.

A
B

Unit

Then again it is clear that the combination of A and B will be 3 + 2 7ths,
3+2

7 or 5
7 .
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A and B
Unit

These two examples were easy since the standard of measurements for
both A and B were the same, so all we had to do was add up the total
number used. Now suppose different standards have been used. Say A is 2

9
Unit and B is 1

4 Unit. (This time we have picked a bigger Unit, to make it
easier to see what is happening.)

A
Unit
Unit
B

But it is easy to change standards. If A is 2
9 Units, A is also 2·4

9·4 or 8
36

Units. And if B is 1
4 Unit, B is also 9·1

9·4 or 9
36 Unit. Now the standards are

the same, namely 36ths, and the total number used for A and B together
is 8+9 of them. So the combination of A with B should be 8+9

36 or 17
36 Unit.

Most generally, suppose A is a
b Unit and B is c

d Unit. Then also A is a·d
b·d

Unit and B is b·c
b·d Unit. Then the total number of (b · d)ths needed to make

up A and B together is a · d+ b · c, so A and B combined is a·d+b·c
b·d Unit.

The process of going from the fractions a
b and c

d to the fraction a·d+b·c
b·d

is of interest to us because it corresponds to the combining of line seg-
ments. In our first example, where we did not use fractions, what we did
was a whole number addition. Reasonably, we may call the more general
operation, involving fractions, addition too.

Definition 5.5.1
a

b
+
c

d
=
a · d+ b · c

b · d .

Remark In using this definition it is simpler to learn the pattern rather
than the formula.

1. The bottom is the product of the bottoms: b · d;

2. The top is the sum of the ‘cross products’: a · d+ b · c.

Exercises

Exercise 5.5.1 Use the definition and calculate:

1. 2
9 + 1

4 ;

2. 1
6 + 2

6 .
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5.6 Properties of addition of fractions

According to the definition,

1
4

+
2
4

=
1 · 4 + 4 · 2

4 · 4 =
12
16
.

Now 1/4 and 2/4 have common denominators, so we are tempted to
combine them into 1+2

4 or 3
4 . As a matter of fact, 3

4 ∼ 12
16 . The following

theorem says this sort of thing always happens.

Theorem 5.6.1
a

b
+
c

b
∼ a+ c

b
.

Proof By definition,

a

b
+ c

b = a·b+b·c
b·b

=
b·(a+c)

b·b

∼ a+c

b
by Theorem 5.3.2.

According to the definition,

6
15

+
2
10

=
6 · 10 + 15 · 2

15 · 10
=

90
150

.

But it is certainly tempting to say, 6
15 = 3·2

3·5 ∼ 2
5 and 2

10 = 2·1
2·5 ∼ 1

5 so
instead of 6

15 + 2
10 we may compute 2

5 + 1
5 , which, by Theorem 5.6.1, is

equivalent to 3
5 . As a matter of fact, 3

5 ∼ 90
150 . What we need is a general

result that says we can always replace fractions by their equivalents in
addition problems.

Theorem 5.6.2 Suppose a
b ∼ a′

b′ and c
d ∼ c′

d′ . Then a
b + c

d ∼ a′

b′ + c′

d′ .

Remark In words this says: sums of equivalent fractions are equivalent.

Proof We are given a
b ∼ a′

b′ and c
d ∼ c′

d′ . By definition, this says a·b′ = b·a′
(1) and c·d′ = d·c′ (2). We must show a

b+ c
d ∼ a′

b′ +
c′

d′ . By various definitions
this says (a · d+ b · c) · b′ · d′ = b · d · (a′ · d′+ b′ · c′) or, using the distributive
law, a · d · b′ · d′ + b · c · b′ · d′ = b · d · a′ · d′ + b · d · b′ · c′ (3). The result
will be established if we show (3) follows from (1) and (2), which is a whole
number problem.

From (1), a · b′ · d · d′ = b · a′ · d · d′ and from (2), c · d′ · b · b′ = d · c′ · b · b′.
Adding these together, a · b′ · d · d′ + c · d′ · b · b′ = b · a′ · d · d′ + d · c′ · b · b′
and this is (3) except for the order of the factors, which we know doesn’t
matter.
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Theorem 5.6.3 (commutative law for addition)

a

b
+
c

d
∼ c

d
+
a

b
.

Theorem 5.6.4 (associative law for addition)

a

b
+ (

c

d
+
e

f
) ∼ (

a

b
+
c

d
) +

e

f
.

Exercises

Exercise 5.6.1 Use Theorems 5.6.1 and 5.6.2 to show 3
4 + 7

8 ∼ 13
8 .

Exercise 5.6.2 Prove Theorem 5.6.3.

Exercise 5.6.3 Prove Theorem 5.6.4.

5.7 Addition of rational numbers

Addition is designed to correspond to putting line segments together. We
defined addition for fractions, but it is rational numbers that really repre-
sent lengths. We ought to have a notion of addition for rational numbers.
Let us say the fraction a

b names the rational number
[
a
b

]
. Reasonably, we

would like to define addition for rational numbers in terms of addition of
the fractions that name them. The problem is, rational numbers have many
names; will it matter which one we choose? Let us look at an example. Sup-
pose we try to ‘add’

[
2
3

]
and

[
1
2

]
by working with names for them. Well,

by definition of addition for fractions, 2
3 + 1

2 = 2·2+3·1
3·2 = 7

6 so we might set[
2
3

]
+
[

1
2

]
=
[

7
6

]
.

But
[

2
3

]
=
[

4
6

]
and

[
1
2

]
=
[

2
4

]
since 2

3 ∼ 4
6 and 1

2 ∼ 2
4 , so 4

6 is also a name
for
[

2
3

]
and 2

4 is also a name for
[

1
2

]
. If we work with these names we get

4
6 + 2

4 = 4·4+6·2
6·4 = 28

24 so we might also set[
2
3

]
+
[

1
2

]
=
[

28
24

]
.

Fortunately, 28
24 ∼ 7

6 , so
[

28
24

]
=
[

7
6

]
, we get the same thing either way.

The following theorem says this always happens, and makes possible our
definition of addition for rational numbers.

Theorem 5.7.1 Suppose
[
a

b

]
=
[
a′

b′

]
and

[
c

d

]
=
[
c′

d′

]
. Then

[
a

b
+

c

d

]
=[

a′

b′ + c′

d′

]
.
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Proof This follows immediately from Theorems 5.4.2 and 5.6.2.

Definition 5.7.2
[
a
b

]
+
[
c
d

]
=
[
a
b + c

d

]
.

Remark This definition says we add rational numbers by adding their
names, and seeing what rational number has the result in it. The theorem
says it doesn’t matter which names we choose to work with.

5.8 Properties of addition of rationals

We have, so far, used letters like a, b, c, . . . , x, y, z to represent whole
numbers. Now we start the convention of using capital letters, A, B, C,
. . . , X, Y , Z to represent rational numbers. Then if we say X is a rational
number, we mean there are whole numbers x and y so that X =

[
x
y

]
.

This convention of always using capital letters for rational numbers in this
Chapter will save a great deal of writing.

Theorem 5.8.1 (commutativity of addition) X + Y = Y +X.

Proof X is a rational number, so X =
[
a
b

]
for some fraction a

b . Likewise,
Y =

[
c
d

]
for some fraction c

d . Now, by Theorem 5.6.3, ab + c
d ∼ c

d + a
b . Then,

by Theorem 5.4.2,
[
a
b + c

d

]
=
[
c
d + a

b

]
. By the definition of addition for

rational numbers this says
[
a
b

]
+
[
c
d

]
=
[
c
d

]
+
[
a
b

]
, that is, X +Y = Y +X.

Theorem 5.8.2 (associativity of addition) X+(Y +Z) = (X+Y )+Z.

Example Finally, we consider a specific example of addition, carried out
rather as we are used to.

[
1
2

]
+
[

3
4

]
=
[

1·2
2·2
]

+
[

3
4

]
=
[

2
4

]
+
[

3
4

]
=
[

2
4 + 3

4

]
=[

5
4

]
.

Exercises

Exercise 5.8.1 Prove Theorem 5.8.2.

Exercise 5.8.2 Justify each step of the example above by citing results
we have proved, or definitions.

Exercise 5.8.3 Prove X +
[

0
1

]
= X.

5.9 Multiplication of Fractions

We began our discussion of measuring by picking a standard Unit length.
Well, suppose we choose a different standard, a New Unit, and now we
want lengths in terms of New Units. Must we re-measure everything, or is
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it enough to measure our Old Unit, using our New Unit, and then do some
calculation? More specifically, suppose we have measured line segment A
using our Old Unit, and also we have measured our Old Unit, using our
New Unit. Can we calculate the length of A in terms of our New Unit, or
must we go back and measure it all over?

We begin with a simple example, where fractions are not needed. Suppose
A is 3 Old Units.

A
Old Unit

and suppose our Old Unit is 2 New Units

Old Unit
New Unit

Then there are 2 New Units in each Old Unit and 3 of those in A, so
there are 2 · 3 = 6 New Units in A.

A
Old Unit

New Unit

For our next, more complicated, example, suppose line segment A is 2
7

Old Unit, and our Old Unit is 7
9 New Unit. Then the situation is still rather

simple. We know the Old Unit is 7
9 New Unit. So if we divide our New Unit

into 9 parts, 7 of them will make up our Old Unit. But then each of these
parts is a 7th of the Old Unit; we know A is 2

7 Old Unit, that is, A is 2 of
these parts, each of which is a 9th of the New Unit.

2
9


2
7

{
A (2 parts)
Old Unit (7 parts)

7
9

{
Old Unit (7 parts)
New Unit (9 parts)

Thus A is 2
9 New Units. The important thing in this example is that the

bottom number in 2
7 is also the top number in 7

9 .
More generally suppose

A is a
b Old Unit, and

Old Unit is b
c New Unit.

Since Old Unit is b
c New Unit, we can divide our New Unit into c parts,

and use b of them to make up our Old Unit. Also, since A is a
b Old Unit,
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we can divide our Old Unit up into b parts, and use a of them to make up
A. But our Old Unit is already divided into b parts!

a

c


a
b

{
A (a parts)
Old Unit (b parts)

b
c

{
Old Unit (b parts)
New Unit (c parts)

In this diagram all the parts are the same size. It follows that A is a
c New

Unit.
Thus we know what to do if the bottom number in our measurement of

A, a
b , is also the top number in our measurement of the Old Unit, b

c . We
go from a

b and b
c to a

c .
Now consider the general case. Suppose A is a

b Old Unit, and Old Unit
is c

d New Unit. Here the appropriate bottom and top numbers are not the
same. But we can make them so. We have a

b ∼ a·c
b·c and c

d ∼ b·c
b·d so also A

is a·c
b·c Old Unit, and Old Unit is b·c

b·d New Unit. Now the bottom number in
our measurement of A is the same as the top number in our measurement
of the Old Unit. By the argument above, then, we should go from a·c

b·c and
b·c
b·d to a·c

b·d . The length of A should be a·c
b·d New Unit.

The process of going from the fractions a
b and c

d to the fraction a·c
b·d

is of interest to us because it corresponds to changing our standard of
measurement. In the first example, where fractions were not used, what
we did was a whole number multiplication. We may, then, call the more
general operation on fractions multiplication too.

Definition 5.9.1
a

b
· c
d

=
a · c
b · d .

Exercises

Exercise 5.9.1 In the example used above, b 6= 0 since it is on the bottom
in a

b . Then b·c
b·d is a legitimate expression. But it is possible for c to be 0.

If it is, a·c
b·c would not be a fraction as it would have 0 on the bottom.

Our informal argument above tacitly assumed this did not happen. Now
suppose A is a

b Old Unit, and Old Unit is 0
d new Unit. See what this means,

and give an informal argument that, even in this case, A is a·0
b·d New Unit.

Exercise 5.9.2 Show:

1. 3
7 · 8

11 = 24
77 ;

2. 3
7 · 7

3 ∼ 1
1 ;

3. 3
7 · 4

4 ∼ 3
7 .
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5.10 Properties of multiplication of fractions

Theorem 5.10.1 Suppose a
b ∼ a′

b′ and c
d ∼ c′

d′ . Then a
b · cd ∼ a′

b′ · c
′

d′ .

Remark This says that products of equivalent fractions are equivalent.

Theorem 5.10.2 (Commutativity of multiplication)

a

b
· c
d
∼ c

d
· a
b
.

Theorem 5.10.3 (Associativity of multiplication)

a

b
·
(
c

d
·
e

f

)
∼
(
a

b
·
c

d

)
·
e

f
.

Theorem 5.10.4 (Distributive law)

a

b
·
(
c

d
+
e

f

)
∼
(a
b
· c
d

)
+
(
a

b
· e
f

)
.

Exercises

Exercise 5.10.1 Prove Theorem 5.10.1.

Exercise 5.10.2 Prove Theorem 5.10.2.

Exercise 5.10.3 Prove Theorem 5.10.3.

Exercise 5.10.4 Prove Theorem 5.10.4.

5.11 Multiplication of rational numbers

Theorem 5.11.1 Suppose
[
a

b

]
=
[
a′

b′

]
and

[
c

d

]
=
[
c′

d′

]
. Then

[
a

b
· c
d

]
=[

a′

b′
· c
′

d′

]
.

Proof This is immediate by Theorems 5.4.2 and 5.10.1.

Definition 5.11.2 [
a

b

]
·
[
c

d

]
=
[
a

b
· c
d

]
.

Remark This definition says we multiply rational numbers by multiplying
their fraction names. The theorem above says it won’t matter which names
we choose to work with.
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Theorem 5.11.3 (Commutativity of multiplication) X · Y = Y ·X.

Theorem 5.11.4 (Associativity of multplication) X · (Y · Z) = (X ·
Y ) · Z.

Theorem 5.11.5 (Distributive law) X · (Y + Z) = X · Y +X · Z.

Exercises

Exercise 5.11.1 Prove Theorem 5.11.3.

Exercise 5.11.2 Prove Theorem 5.11.4.

Exercise 5.11.3 Prove Theorem 5.11.5.

Exercise 5.11.4 Show X ·
[

0
1

]
=
[

0
1

]
.

Exercise 5.11.5 Show X ·
[

1
1

]
= X.

Exercise 5.11.6 Show
[

3
7

]
·
[

7
3

]
=
[

1
1

]
.

Exercise 5.11.7 Show
[

2
1

]
·X = X +X.

5.12 Order of fractions

Suppose we use our Unit and measure each of two line segments, A and B.
Say A is a

b Unit and B is c
d Unit. Suppose A is longer than B. Then it is

reasonable to say a
b is a bigger fraction than c

d . Now, is there some way we
can recognize when one fraction is bigger than another, without having to
go out and measure something?

A (ab Unit)
B ( cd Unit)

Unit

If A is a
b Unit, it is also a·d

b·d Unit. Likewise if B is c
d Unit, it is also b·c

b·d Unit.

A (a·db·d Unit)
B ( b·cb·d Unit)

Unit

Then, if we divide our Unit into b · d parts, we will need a · d of them
to make up A, and b · c of them to make up B. But we are supposing A is
longer than B, so we should need more parts to fill out A than to fill out
B. We should have a · d > b · c.
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Definition 5.12.1 We say a
b >

c
d if a · d > b · c.

Definition 5.12.2 a
b <

c
d if c

d >
a
b .

According to the definition, 3
4 > 2

3 since 3 · 3 > 4 · 2. But 3
4 ∼ 6

8 , that
is, if 3

4 comes up when we measure a certain line segment, 6
8 can also come

up. Since > for fractions was meant to relate lengths of line segments, we
ought to have 6

8 >
2
3 also, since we had 3

4 >
2
3 . As a matter of fact, we do

have 6
8 >

2
3 since 6 · 3 > 8 · 2. The following theorem says this will always

happen.

Theorem 5.12.3 Suppose a
b ∼ a′

b′ and c
d ∼ c′

d′ . Then if a
b >

c
d then a′

b′ >
c′

d′ .

Proof Using the definitions of ∼ and > for fractions, we are given
a · b′ = b · a′
c · d′ = d · c′
a · d > b · c

and we must show
a′ · d′ > b′ · c′.

This is a problem about whole numbers. Now,
a · d > b · c

Also, neither b′ nor d′ is 0, so we may use Theorem 3.5.3 to conclude
a · d · b′ · d′ > b · c · b′ · d′

or, rearranging,
a · b′ · d · d′ > b · b′ · c · d′.

Next, a · b′ = b · a′ and c · d′ = d · c′, so on substituting, we get
b · a′ · d · d′ > b · b′ · d · c′

Next, neither b nor d is 0, so by using Theorem 3.5.3 again,
a′ · d′ > b′ · c′

which completes the proof.

Theorem 5.12.4 (Transitivity of >) If a
b >

c
d and c

d >
e
f then a

b >
e
f .

Proof Suppose a
b >

c
d and c

d >
e
f . Then by definition,

1) a · d > b · c
2) c · f > d · e

Since f is on the bottom in e
f , f 6= 0, so from 1),

a · d · f > b · c · f .
Similarly b 6= 0 since a

b is a fraction, so from 2),
b · c · f > b · d · e.

Now by transitivity of > for whole numbers (Theorem 3.4.4),
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a · d · f > b · d · e.
Finally, d 6= 0, since c

d is a fraction, so from this,
a · f > b · e

which means
a
b >

e
f .

Theorem 5.12.5 (Trichotomy law) For each choice of fractions a
b and

c
d we have exactly one of the following:

1. a
b >

c
d ,

2. a
b ∼ c

d ,

3. a
b <

c
d .

Definition 5.12.6 a
b ≥ c

d if a
b >

c
d or a

b ∼ c
d .

Exercises

Exercise 5.12.1 Prove Theorem 5.12.5.

Exercise 5.12.2 Prove a
b ≥ c

d if and only if a · d ≥ b · c.

5.13 Order of rational numbers

Theorem 5.13.1 Suppose
[
a

b

]
=
[
a′

b′

]
and

[
c

d

]
=
[
c′

d′

]
. Then a

b >
c
d if

and only if a′

b′ >
c′

d′ .

Proof Immediate from Theorems 5.4.2 and 5.12.3.

Definition 5.13.2
[
a
b

]
>
[
c
d

]
if a

b >
c
d .

Remark As expected, this definition has us compare rational numbers
by comparing their fraction names. The theorem above says our choice of
names is not important.

Theorem 5.13.3 (Transitivity of >) If X > Y and Y > Z then X >
Z.

Theorem 5.13.4 (Trichotomy law) For any rational numbers X and
Y , exactly one of the following holds: X > Y , X = Y , X < Y .

Definition 5.13.5 X ≥ Y if X > Y or X = Y .
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Both the whole numbers and the rational numbers have a notion of order.
And these two notions have many similar properties; both are transitive,
for example. But they also have important differences. We saw in Chapter
Three that there were no whole numbers between n and n+. But in the
system of rational numbers, between any two there is another. We leave
this to you to verify, as Exercise 5.13.5.

Exercises

Exercise 5.13.1 Prove Theorem 5.13.3.

Exercise 5.13.2 Prove Theorem 5.13.4.

Exercise 5.13.3 Prove
[
a
b

]
≥
[
c
d

]
if and only if a

b ≥ c
d .

Exercise 5.13.4 Prove
[
a
b

]
≥
[
c
d

]
if and only if a · d ≥ b · c.

Exercise 5.13.5 Suppose A > B. Show A >
[

1
2

]
· (A+B) and

[
1
2

]
· (A+

B) > B.

Exercise 5.13.6 Show that between any two rational numbers there is an
unlimited number of others.

5.14 Insertion and deletion laws

The pattern of our work in this chapter has been to prove some result for
fractions, then use it to get a similar result for rational numbers. In this
section we only state the results for rational numbers, but, of course, we
work with fractions to establish them.

Theorem 5.14.1 For any rational numbers X, Y and Z, X = Y if and
only if X + Z = Y + Z.

Proof If X = Y it is immediate that X + Z = Y + Z. Now suppose
X + Z = Y + Z. We show X = Y . X, Y and Z are rational numbers, say

X =
[
x

y

]
, Y =

[
z

w

]
and Z =

[
a

b

]
. Thus we have:[

x

y

]
+

[
a

b

]
=

[
z

w

]
+

[
a

b

]
[
x

y
+
a

b

]
=

[
z

w
+
a

b

]
[
x · b+ y · a

y · b

]
=
[
z · b+ w · a

w · b

]



5. The Rational Number System 109

x · b+ y · a
y · b ∼ z · b+ w · a

w · b

(x · b+ y · a) · w · b = y · b · (z · b+ w · a).

Now b 6= 0 since it is on the bottom in a
b so we may cancel it.

(x · b+ y · a) · w = y · (z · b+ w · a)

x · b · w + y · a · w = y · z · b+ y · w · a.
Next, y · a · w occurs on both sides; cancelling it, we get:

x · b · w = y · z · b.
Again, b 6= 0 so:

x · w = y · z

x

y
∼ z

w[
x

y

]
=

[
z

w

]

X = Y.

This concludes the proof.

Theorem 5.14.2 For any rational numbers X, Y and Z, X > Y if and
only if X + Z > Y + Z.

Theorem 5.14.3 For any rational numbers X, Y and Z, with Z 6=
[

0
1

]
:

1. X = Y if and only if X · Z = Y · Z;

2. X > Y if and only if X · Z > Y · Z.

Exercises

Exercise 5.14.1 Prove Theorem 5.14.2.

Exercise 5.14.2 Prove Theorem 5.14.3.
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5.15 Subtraction

We will define subtraction for rational numbers directly, but to calculate
particular subtractions, we will have to work with fractions.

We want to define subtraction so that it is ‘opposite to’ addition. Recall,
when we worked with whole numbers, x−y was that unique whole number
which, when added to y, gave x. But, in order to use that definition we had
to determine two things:

1. when would there be a number we could add to y to get x;

2. when would there be only one.

We face the same problems in working with rational numbers.

Theorem 5.15.1 If Y +A = X and also Y +A′ = X then A = A′.

Proof Y + A = X and Y + A′ = X so Y + A = Y + A′. Now by Theo-
rem 5.14.1, A = A′.

This theorem says that if there is anything we can add to Y to get X,
there is only one thing. Now we must determine when such a thing will
exist. Reasonably, we begin by looking at some fraction examples. In them,
of course, we do not try for true equality; equivalence is enough.

Consider 3
7 and 5

7 . Is there some fraction a
b such that 3

7 + a
b ∼ 5

7? Since
both 3

7 and 5
7 have 7 on the bottom, it is reasonable to try b = 7. So we ask,

is there an a for which 3
7 + a

7 ∼ 5
7 . By Theorem 5.6.1, 3

7 + a
7 ∼ 3+a

7 , so the
question becomes: is there an a for which 3+a

7 ∼ 5
7? To do this we simply

need an a for which 3 + a = 5. And by our work with whole numbers, we
know a = 5− 3 = 2. Thus 3

7 + 2
7 ∼ 5

7 .
Next, consider 1

9 and 5
7 . Is there a fraction a

b such that 1
9 + a

b ∼ 5
7?

Here the denominators are different, but we can make them the same since
1
9 ∼ 1·7

9·7 = 7
63 and 5

7 ∼ 5·9
7·9 = 45

63 . Then our question becomes: is there a
fraction a

b for which 7
63 + a

b ∼ 45
63 , and following the pattern of our previous

example, we come up with 45−7
63 , or 7

63 + 38
63 ∼ 45

63 .
More generally, consider x

y and z
w . Is there a fraction a

b for which z
w +

a
b ∼ x

y ? As in the previous example, we introduce common denominators;
x
y ∼ x·w

y·w and z
w ∼

y·z
y·w , so we are asking, is there a fraction a

b for which
y·z
y·w + a

b ∼ x·w
y·w ? Now, our previous example suggests we should try a

b =
x·w−y·z
y·w . But notice, this only makes sense if x · w − y · z is defined, which

happens when x ·w ≥ y · z. And by Exercise 5.12.2 this happens just when
x
y ≥ z

w .

Lemma 5.15.2 If x
y ≥ z

w then x·w−y·z
y·w is defined, and z

w + x·w−y·z
y·w ∼ x

y .

Now we return to rational numbers.

Theorem 5.15.3 The following two items are equivalent:
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1. for some A, Y +A = X

2. X ≥ Y .

Proof I. Suppose first that for some A, Y + A = X. X, Y and A are

rational numbers, say X =
[
x

y

]
, Y =

[
z

w

]
and A =

[
a

b

]
. Then[

z

w

]
+

[
a

b

]
=

[
x

y

]
[
z

w
+
a

b

]
=

[
x

y

]
[
z · b+ w · a

w · b

]
=
[
x

y

]
z · b+ w · a

w · b ∼ x

y

(z · b+ w · a) · y = x · w · b

z · b · y + w · a · y = x · w · b
But by the properties of whole numbers, this says,

x · w · b ≥ z · b · y.
Now b 6= 0 since it is on the bottom in a

b , so we can cancel it.

x · w ≥ z · y
and by Exercise 5.13.4, this says,[

x

y

]
≥
[
z

w

]
or

X ≥ Y.

II. Now suppose X ≥ Y . Again X and Y are rational numbers, say

X =
[
x

y

]
and Y =

[
z

w

]
. Then[

x

y

]
≥
[
z

w

]
.
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By Exercise 5.13.3,

x

y
≥ z

w
.

Then by Lemma 5.15.2, x·w−y·z
y·w is meaningful. We set

A =
[
x · w − y · z

y · w

]
and then Lemma 5.15.2 immediately gives us

Y +A = X.

Now we know when there will be something we can add to Y to get X;
it happens when X ≥ Y .

Definition 5.15.4 If X ≥ Y then X − Y is defined, and it is that unique
A for which Y +A = X.

As far as actually calculating subtractions, we have the following.

Theorem 5.15.5

1. If
[
x

y

]
≥
[
z

w

]
then

[
x

y

]
−
[
z

w

]
=
[
x·w−y·z

y·w

]
.

2. If
[
x

w

]
≥
[
z

w

]
then

[
x

w

]
−
[
z

w

]
=
[
x−z

w

]
.

Exercises

Exercise 5.15.1 Prove Lemma 5.15.2.

Exercise 5.15.2 Prove Theorem 5.15.5.

Exercise 5.15.3 Justify each step in the following.
[

5
6

]
−
[

1
3

]
=
[

5
6

]
−
[

2
6

]
=[

5−2
6

]
=
[

3
6

]
=
[

1
2

]
.

Exercise 5.15.4 Prove X −X =
[

0
1

]
.

Exercise 5.15.5 Prove X ≥
[

0
1

]
for any X, and X −

[
0
1

]
= X.
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5.16 Properties of subtraction

The basic properties of subtraction for rational numbers are the same as for
whole numbers. We list some of them in the theorem below. To cut down on
words, we will simply write, say, X−Y = (X−Z)+(Z−Y ) and mean by it:
if X−Y , X−Z and Z−Y are all defined, then X−Y = (X−Z)+(Z−Y ).

Theorem 5.16.1

1. X − Y = (X − Z) + (Z − Y ).

2. X · (Y − Z) = X · Y −X · Z.

3. (X + Y )− Z = X + (Y − Z).

4. X − (Y + Z) = (X − Y )− Z = (X − Z)− Y .

5. X − Y = (X + Z)− (Y + Z).

6. X − (Y − Z) = (X + Z)− Y .

7. X − (Y − Z) = (X − Y ) + Z.

Exercises

Exercise 5.16.1 Prove Theorem 5.16.1.

5.17 Division

We want an operation to go opposite to multiplication of rational numbers.
For whole numbers we said x was divisible by y if there was exactly one z
such that y · z = x, and if there was, we set x÷ y to be that z. We follow
the same pattern for rational numbers. We must examine the questions:
when will there be some Z for which Y · Z = X; when will it be unique?

Theorem 5.17.1 If Y · A = X and Y · A′ = X, where Y 6=
[

0
1

]
, then

A = A′.

Proof Y ·A = X and Y ·A′ = X, so Y ·A = Y ·A′. Now by Theorem 5.14.3,
A = A′.

This theorem says that, provided Y 6=
[

0
1

]
, if there is anything by which

we can multiply Y to get X, there is only one thing. But when will there
be anything? We begin by looking at fraction examples. And, of course, we
only require equivalence, not equality.

Is there some fraction a
b such that 2

5 · ab ∼ 3
4? Suppose there is, let us

find one. Using the definition of multiplication, we would have 2·a
5·b ∼ 3

4 . By
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definition 2 · a · 4 = 5 · b · 3. Rearranging this, a · 2 · 4 = b · 5 · 3 which says
a
b ∼ 5·3

2·4 .
More generally, consider x

y and z
w . Is there a fraction, a

b , for which z
w ·

a
b ∼ x

y ? If there were, by definition of multiplication, z·a
w·b ∼ x

y which gives
z · a · y = w · b · x. Rearranging a · y · z = b · x · w which gives a

b ∼ x·w
y·z .

There is a problem hidden here, however. We know y 6= 0 since it is on the
bottom in x

y . But z is on the top in z
w , so z could be 0. If it is, x·w

y·z has 0
on the bottom, and so is not a fraction. The above only works if z 6= 0.

Theorem 5.17.2 If Y 6=
[

0
1

]
then there is an A for which Y ·A = X.

Proof X and Y are rational numbers, say X =
[
x
y

]
and Y =

[
z

w

]
. Since

Y 6=
[

0
1

]
, z 6= 0 (why?). Then x·w

y·z is a fraction. We set A =
[
x·w
y·z

]
. Then

Exercise 5.17.2 gives us that Y ·A = X.

Now we know when there will be something by which we can multiply
Y to get X; it happens when Y 6=

[
0
1

]
.

Definition 5.17.3 Suppose Y 6=
[

0
1

]
. Then X ÷ Y is that unique rational

number A such that Y ·A = X.

Notice that we don’t need anything comparable to divison with remain-
der to handle the cases where exact division isn’t possible. In the rational
number system, exact division, except by

[
0
1

]
, always happens.

Now we look at how one might calculate divisions. In Exercise 5.17.2
we see z

w · x·wy·z ∼ x
y which gives

[
z
w

]
·
[
x·w
y·z

]
=
[
x
y

]
and this means that[

x
y

]
÷
[
z
w

]
=
[
x·w
y·z

]
. As it turns out, there is an easy way to describe this

rational number.
[
x·w
y·z

]
=
[
x
y · wz

]
=
[
x
y

]
·
[
w

z

]
. Here

[
x
y

]
is one of the

rational numbers we started with, and
[
w

z

]
is the other one ‘upside down’.

Definition 5.17.4 If
[
a
b

]
6=
[

0
1

]
then

[
a
b

]−1 =
[
b
a

]
.

Remark If
[
a
b

]
6=
[

0
1

]
then no fraction in

[
a
b

]
can have 0 on top (Why?).

So turning any member of
[
a
b

]
over produces a fraction. Exercise 5.17.3

says it doesn’t matter which member of
[
a
b

]
we choose to turn over. The

expression X−1 is read ‘X inverse’.

Using this notion of inverse, the rational number we found earlier be-
comes simply

[
x·w
y·z

]
=
[
x
y

]
·
[
z
w

]−1. That is, to divide
[
x
y

]
by
[
z
w

]
, we

invert
[
z
w

]
and multiply.
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Exercises

Exercise 5.17.1 Show 2
5 · 5·3

2·4 ∼ 3
4 .

Exercise 5.17.2 Suppose z 6= 0. Show z
w · x·wy·z ∼ x

y .

Exercise 5.17.3 Suppose a
b ∼ c

d and neither a nor c is 0. Show b
a ∼ d

c .

Exercise 5.17.4 If Y 6=
[

0
1

]
, show X ÷ Y = X · Y −1.

Exercise 5.17.5 If Y 6=
[

0
1

]
, show Y · Y −1 =

[
1
1

]
.

Exercise 5.17.6 If Y 6=
[

0
1

]
, show (Y −1)−1 = Y .

Exercise 5.17.7 Show (X · Y )−1 = X−1 · Y −1.

Exercise 5.17.8 Show
[
a
1

]
÷
[
b
1

]
=
[
a
b

]
.

5.18 Simplifying our notation

Fractions and rational numbers are different things. Rational numbers are
the things we are really interested in; fractions are merely names for them.
But fractions are important because it is by manipulating them that we
work with the rational numbers they name. Our notation thus far has kept
this distinction visible, allowing us to tell at a glance whether we are talking
about a fraction, 1

2 say, or a rational number,
[

1
2

]
say. But now the basic

properties of the rational number system have been developed, and we can
safely stop pointing out the distinction.

From now on we will use the symbol a
b for both the fraction a

b and the
rational number

[
a
b

]
. It can be told from context which is meant.

For example, if we write 1
2 = 2

4 we are clearly talking about rational
numbers, and in earlier sections we would have written

[
1
2

]
=
[

2
4

]
. But if

we write that 1
2 is in lowest terms, we must be talking about a fraction,

since rational numbers, being sets of fractions, don’t themselves have tops
and bottoms to work with.

Exercises

Exercise 5.18.1 Which of the following statements are about fractions,
which are about rational numbers?

1. a
b = n·a

n·b .

2. 3
4 + 3

4 = 3
2 .

3. 2
3 has a denominator of 3.

4. 12 is a common denominator for 2
3 and 3

4 .

5. The inverse of 2
3 is 3

2 .
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5.19 Whole numbers and rational numbers

No rational number is also a whole number; they are quite different things.
To work with rational numbers, we use fractions, and to work with frac-
tions, we must already know how to work with whole numbers. To say
whole numbers are ‘among’ the rationals would lead to a circular situation.
But there are certain rational numbers that ‘behave like’ whole numbers.
In this section we take a close look at this.

To say a line segment is 3
1 Unit just says it is 3 Units long. Having

realized this, we might expect 3
1 and 3 to have similar properties in their

respective number systems. More generally, let us say the whole number a
and the rational number a

1 correspond. We will see that whole numbers and
their corresponding rational numbers behave alike in adding, multiplying,
comparing, subtracting and dividing.

First we look at addition. Suppose, in the whole number system, a+b = c.
To say the corresponding rationals behave the same way in the rational
number system is to say a

1 + b
1 = c

1 . But, in fact, a1 + b
1 = a·1+1·b

1·1 = a+b
1 = c

1 .
This may be succinctly expressed as a

1 + b
1 = a+b

1 .
Exercise 5.19.1 says that a and a

1 behave alike in their respective number
systems. Since we are finished with our development of the properties of
rational numbers it will do no harm, from now on, to stop emphasizing the
distinction between 3 and 3

1 say.
From now on we will use the symbol a for both the whole number a and

the rational number a
1 . Either the context will make it clear which is meant,

or else it won’t matter.
For example, we may write 3

2 + 5
2 = 4 instead of 3

2 + 5
2 = 4

1 .
Notice that 0 and 0

1 get identified. But, in fact, Exercise 5.8.3 says 0
1

behaves like an ‘additive identity’ for rationals. Also 1 and 1
1 get identified,

and we have Exercise 5.11.5 which says 1
1 behaves like a ‘multiplicative

identity’ for rationals.
We call attention one last time to the fact that 4 and 4

1 are different
things. But once it has been proved that they have similar properties, it is
harmless to write them both the same way.

Exercises

Exercise 5.19.1 Show:

1. a
1 · b1 = a·b

1 ;

2. a > b if and only if a
1 >

b
1 ;

3. a
1 − b

1 = a−b
1

4. if a is divisible by b, a1 ÷ b
1 = a÷b

1 .
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5.20 A different notation for division

It is easy to see that a
1 + b

1 = a
b or, using our abbreviated notation, a÷b = a

b .
Thus, for whole numbers we, in effect, have two notations for division. It is
reasonable to extend this dual notation to all rational numbers.

Definition 5.20.1 Let A and B be rational numbers with B 6= 0. We
write A

B for A÷B, that is, for A ·B−1.

It might be asked, what was wrong with the notation A÷B for division?
The answer is that nothing is wrong with it. But it turns out that the
bar indicating division of rational numbers and the bar of a fraction have
similar formal properties. Then, we need not learn one set of rules for
handling fractions and another for dividing; both sets of rules will look the
same.

For example, by definition and Theorem 5.4.2, x
y = z

w if and only if
x · w = y · z. But also,

Theorem 5.20.2 X
Y = Z

W if and only if X ·W = Y · Z (where X, Y , Z,
and W are any rational numbers, with Y and W not 0).

Proof Suppose X
Y = Z

W (which means X · Y −1 = Z · W−1). Then X ·
Y −1 · Y = Z ·W−1 · Y or by Exercise 5.17.5, X · 1 = Z ·W−1 · Y or, by
Exercise 5.11.5, X = Z ·W−1 ·Y . Then, similarly, X ·W = Z ·W−1 ·Y ·W =
Z · Y ·W−1 ·W = Z · Y · 1 = Z · Y . Thus X ·W = Z · Y .

Other similarities in the behavior of the bar of fractions and the bar for
division are listed in the following theorems.

Theorem 5.20.3

1. X
Y = X·W

Y ·W .

2. X
W + Y

W = X+Y
W .

3. X
Y + Z

W = X·W+Y ·Z
Y ·W .

Theorem 5.20.4 X
Y > Z

W if and only if X ·W > Y · Z.

Theorem 5.20.5

1. X
Y · ZW = X·Z

Y ·W .

2. X
Y ÷ Z

W = X
Y · WZ .
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Exercises

Exercise 5.20.1 Complete the proof of Theorem 5.20.2 by showing: if
X ·W = Y · Z then X

Y = Z
W .

Exercise 5.20.2 Prove Theorem 5.20.3.

Exercise 5.20.3 Prove Theorem 5.20.4.

Exercise 5.20.4 Prove Theorem 5.20.5.
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Finite Decimals
What is it that is here propounded? Some wonderful invention?

Hardly that, but a thing so simple that it scarce deserves the name
invention; for it is as if some stupid country lout chanced upon great
treasure without using any skill in the finding. . .

–La Disme
Simon Stevin
(1548 - 1620)

6.1 Introduction

The system of rational numbers is essential; it is difficult to imagine our
world trying to get along without it. But there are drawbacks in working
with fractions. For instance, Archimedes once proved that π was between
3 1335

9347 and 31337
8069 . Question: which of these is bigger? The trouble is, we

have no tool available for the rational numbers comparable to place-value
notation for the whole numbers.

A long time ago, people realized that things were simpler if they only
worked with fractions in which the denominators were powers of some sin-
gle, fixed number. For instance, it is customary to divide inches into halves,
quarters, eighths, etc., so that all measurements are expressed using frac-
tions having powers of 2 in the denominator.

At some point it began to be accepted that a good choice for this key
number was 10, the base of our standard system of notation. Fractions
whose denominators are powers of 10 are called decimal fractions. Finally,
in 1585, Simon Stevin published a book, La Disme, in which he set out
a convenient system of naming decimal fractions, essentially what we now
call finite decimals.

In this chapter we will study a notion of base n finite decimal for each
base. It turns out that in no base do we have more than a portion of the
rational numbers available. Yet base n finite decimals provide an entirely
satisfactory system for everyday use. We will see why. Also, on a more
abstract level, the work done in this chapter provides the foundations for
our development of the system of real numbers in later chapters.
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6.2 Finite Decimals

Here, as in Chapter Four, when we refer to base n we always assume n is a
whole number ≥ 2.

Definition 6.2.1 A base n decimal fraction is a fraction in which the de-
nominator is a power of n; that is, it is a fraction of the form a

nb
where a

and b are whole numbers.

Example (in which we use conventional base 10 names to name whole
numbers). 1

2 , 1
4 , 3

8 , 7
1 are all base 2 decimal fractions. 1

10 , 5
10 , 7834

100 , 7
1 are

all base 10 decimal fractions.

A few observations are in order. First, and least important, the termi-
nology is somewhat unfortunate. The word ‘decimal’ literally refers to ten,
and it is awkward to be using it when other bases are involved. We have
to stretch words a bit in order to discuss things that common language has
not provided for. Incidentally, this point came up earlier too. ‘Digit’ not
only has numerical significance, but (not coincidentally) it means finger.
The canonical human being has ten digits, yet we felt free to talk about
base 12 digits.

On a more mathematical level, since n0 = 1 for all bases n, then fractions
with denominators of 1 are base n decimal fractions for all n. These are
the ones that behave like whole numbers.

Finally, it is fractions that we are talking about. Thus 1
2 is a base 2

decimal fraction while the different fraction 5
10 is a base 10 decimal fraction.

As usual, though, it is rational numbers we are really interested in. When
we say some rational number can be expressed as a base n decimal fraction,
we mean that one of the fractions that names it is a base n decimal fraction.
Thus the rational number 1

2 can be expressed both as a base 2 and as a
base 10 decimal fraction.

Now we introduce a simple system for naming those rational numbers
that can be expressed as base n decimal fractions. Then we will work with
the names, much as we did when place-value notation for whole numbers
was introduced in Chapter Four.

Definition 6.2.2 A base n finite decimal is an ordered pair of base n
names for whole numbers (improper names are allowed). The customary
way of writing a base n finite decimal is w.z where w and z are the two
base n whole number names. In the base n finite decimal w.z, w is called
the whole number part and z the decimal part.

Example 101.011 is a base n finite decimal for every n. The whole number
part is 101 and the decimal part is 011 (an improper name).

Next we say how base n finite decimals can be thought of as naming
numbers.



6. Finite Decimals 121

Definition 6.2.3 Let w.z be a base n finite decimal, with z a base n name
of length c. By (w.z)n we mean the rational number

(w)n +
(z)n
nc

.

Example This is a base 10 example. For reading ease we omit subscripts
on whole number names. All whole number names in this example are used
in the base 10 sense. Now 23.168 is a base 10 finite decimal, the decimal
part, 168, is of length 3, so

(23.168)10 = 23 +
168

10
3

= 23 +
168

1000
.

Some conventions. If a finite decimal w.z has a decimal part of length c,
we will call it a c-place decimal. Thus 23.168 is a 3-place decimal.

In a base n finite decimal, if the decimal part is 0 it, and the decimal
point, are often omitted. Thus 23 may be written for 23.0. Likewise, if the
whole number part is 0, it (but not the decimal point) may be omitted.
Thus .168 may be used for 0.168. We should also note that some people say
the decimal part of 23.168 is .168. For us, it is more convenient and natural
not to include the decimal point itself in the decimal part; but rather treat
the decimal point as punctuation, or a separating device, comparable in its
role to the bar of a fraction.

The definition gives (w.z)n as a sum of two base n decimal fractions,
which can be combined into a single one according to Exercise 6.2.1. In
fact, this can always be done in a simple way. If we continue the previous
example, we find

(23.168)10 = 23 +
168

1000

=
23·1000

1000
+

168

1000

=
23000

1000
+

168

1000

=
23168

1000
.

Note that the numerator is simply the whole number part followed di-
rectly by the decimal part. Indeed, this always happens.

Theorem 6.2.4 Let w.z be a base n finite decimal. Then (w.z)n = (wz)n
nc

where c is the length of z.
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Remark (w.z)n is defined earlier in this section. wz, being the concatena-
tion of two base n whole number names, is another such, and hence (wz)n
was defined in Chapter Four.

Proof By induction on the length of z, the decimal part. We leave the
initial step where the length is 1 to you, and go straight to the induction
step. So, suppose the result is known for all base n finite decimals whose
decimal part is of length c. And suppose now we have one with a decimal
part of length c + 1 to work with. Then the decimal part must be of the
form zd, where z is of length c and d is a base n digit. And then, using the
definitions from this section and from Chapter Four,

(w.zd)n = (w)n +
(zd)n

nc+1

= (w)n +
(z)n·n+d

nc+1

= (w)n +
(z)n·n

nc+1
+

d

nc+1

= (w)n +
(z)n

nc
+

d

nc+1

= (w.z)n +
d

nc+1

=
(wz)n

nc
+

d

nc+1
(by induction hypothesis)

=
(wz)n·n

nc+1
+

d

nc+1

=
(wz)n·n+d

nc+1

=
(wzd)n

nc+1

This concludes the induction step.

Finally, we have said that base n finite decimals and base n decimal
fractions were different ways of designating the same rational numbers. We
sketch a proof of this now.

Theorem 6.2.5 A rational number can be expressed as a base n decimal
fraction if and only if it can be named by a base n finite decimal.

Proof Suppose we have a base n finite decimal, say w.z. Then

(w.z)n = (w)n +
(z)n
nc
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and the right hand side is the sum of two (rationals named by) base n dec-
imal fractions, and hence is itself expressible as a base n decimal fraction,
by Exercise 6.2.1.

In the other direction, suppose we have the base n decimal fraction x
nc .

Since x
nc = x·n

nc+1 , we can always arrange things so that the exponent in the
denominator is a counting number, and hence can be the length of a whole
number name. We assume this is the case in what follows. Let y be a base
n name for the whole number x, thus (y)n = x. By using Theorem 4.2.6
we can always find such a y whose length is at least c + 1; let us say we
have done so. Then y can be written as wz where z is a name of length c
and w is a name of length at least 1. But then, using Theorem 6.2.4,

x

nc
=

(wz)n
nc

= (w.z)n

hence we have a base n finite decimal name too.

Exercises

Exercise 6.2.1

1. Show that the sum of two base n decimal fractions is equivalent to a
base n decimal fraction. Similarly for the difference, when defined.

2. Show that the product of two base n decimal fractions is another base
n decimal fraction.

Exercise 6.2.2 Show the result stated in Theorem 6.2.4 is correct when
z is of length 1.

Exercise 6.2.3 Show (w.z0)n = (w.z)n.

6.3 Why finite decimals are not adequate

The base n finite decimals constitute a system of names for certain rational
numbers. But we will be somewhat sloppy, and also call a number a base
n finite decimal if it has a base n finite decimal name. It will be clear from
context when we mean the number and when we mean the name.

Now the inadequacies of finite decimals are simply stated. No matter
what base we choose, there are many rational numbers that aren’t base n
finite decimals. It follows from this that the base n finite decimals are not
closed under division. These are pretty serious flaws.

Example In base 10, 1
3 is not a finite decimal.
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It is common knowledge that the ‘usual’ process for turning 1
3 into a finite

decimal produces an endless string of 3’s. But since we have not discussed
this technique, we have to follow a somewhat different, though equivalent
approach. In the rest of this example base 10 notation is used throughout.

Suppose 1
3 were some base 10 finite decimal, say 1

3 = (w.z)n. Then by
Theorem 6.2.4, 1

3 = (wz)n
10c (where c is the length of z, hence c is at least 1).

Now (wz)n is some whole number, let us write x for it. Thus

1
3

=
x

10c

from which it follows that 3 · x = 10c. This says 3 exactly divides 10c. The
following, together with Theorem 3.10.1, says this is not possible: division
of 10c by 3 always leaves a remainder of 1.

Fact For each counting number c there is a whole number q such that
3 · q + 1 = 10c.

Proof By induction on c. If c is 1, simple calculation shows that taking q
= 3 will do.

Suppose we have a whole number q such that 3 · q+1 = 10c. We produce
a whole number q′ such that 3 · q′ + 1 = 10c+1 which will complete the
proof. Well, let q′ = q · 10 + 3. Then

3 · q′ + 1 = 3 · (q · 10 + 3) + 1
= 3 · q · 10 + 3 · 3 + 1
= 3 · q · 10 + 10
= (3 · q + 1) · 10
= 10c · 10
= 10c+1

One quick consequence of this is that the result of dividing two finite dec-
imals need not be another finite decimal. (Division is meaningful, though,
since finite decimals are just certain rational numbers, and division for
them was defined in the previous chapter.) Consider the base 10 prob-
lem: 1.0 ÷ 3.0. Now, 1.0 = 1 + 0/101 = 1 and 3.0 = 3 + 0/101 = 3 so
1.0÷ 3.0 = 1÷ 3 = 1/3 and we just saw that 1/3 is not any base 10 finite
decimal.

A topic we have not discussed yet is changing bases when finite deci-
mals are involved. This is quite simple though since both the definition of
(w.z)n and Theorem 6.2.4 involve whole numbers, and we know how to
handle them. For example, let us convert (3.23)5 to base 10. Well, using
Theorem 6.2.4 (and Exercise 4.2.4)

(3.23)5 =
(323)5

(100)5
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Now by the conversion techniques for whole number names from Chapter
Four we have (323)5 = (88)10 and (100)5 = (25)10 so

(3.23)5 =
(88)10

(25)10

=
(88)10·(4)10

(25)10·(4)10

=
(352)10

(100)10

= (3.52)10.

But conversion of a finite decimal does not always produce a finite deci-
mal. For example, suppose we try converting (0.4)12 to base 10.

(0.4)12 =
(4)12

(10)12

=
(4)10

(12)10

=
(1)10·(4)10

(3)10·(4)10

=
(1)10

(3)10

And our earlier example showed that this could not be written as a base
10 finite decimal.

Finally we show that examples like 1
3 in base 10 occur for every base

choice. Thus no matter what n we pick, the base n finite decimals never
give us the whole system of rational numbers to work with.

Theorem 6.3.1 For each base, n, the rational number 1
n+1 is not a base

n finite decimal.

Proof Suppose 1
n+1 were a base n finite decimal. We derive a contradic-

tion. If 1
n+1 were a base n finite decimal then it could be written as a base

n decimal fraction, say as

1
n+ 1

=
x

nc

for some whole numbers x and c. Now c cannot be 0 since if it were, x
nc = x

so 1
n+1 would be a whole number. But since n is a base, n > 1 and it follows

that

0 <
1

n+ 1
<

1
2
< 1

so 1 < 1 + 1
n+1 < 2. If 1

n+1 were a whole number, so would 1 + 1
n+1 be, and

this would contradict Theorem 2.13.2.
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Thus c must be a counting number. But then, many choices of c are
possible, since

x

nc
=
x · n
nc+1

Form a collection S of counting numbers as follows. Put c into S if, for
some whole number x,

1
n+ 1

=
x

nc
.

Now suppose c is a member of S. Then for some x we have

1
n+ 1

=
x

nc
.

Then
nc = x · (n+ 1)

= x · n+ x
nc − x · n = x

n · (nc−1 − x) = x

If we write y for nc−1 − x we have n · y = x. Thus

1

n+1
=

x

nc

=
n·y

nc

=
y

nc−1
.

As we showed earlier, for this to happen, c−1 must be a counting number.
But then the criteria is met for c− 1 to also be a member of S.

We have shown that S can have no least member. Then the Well Ordering
Theorem, 2.13.1, says S must be empty. Hence 1

n+1 cannot be written as
a base n decimal fraction.

Exercises

Exercise 6.3.1

1. Show 1
2 is not a base 5 finite decimal.

2. Show 1
5 is not a base 12 finite decimal.

Exercise 6.3.2 Convert the following base 5 finite decimals to base 10
finite decimals.

1. 14.21;
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2. 2.001;

3. 0.03.

Exercise 6.3.3 Convert the following base 12 finite decimals to base 10
fractions. Which of them can be written as base 10 finite decimals?

1. (0.6)12;

2. (0.8)12;

3. (0.5)12.

Exercise 6.3.4 Prove that any given rational number a
b is a finite decimal

in some base.

6.4 Why finite decimals are adequate

Tom. . . found himself swimming about in the stream, being about
four inches, or – that I may be accurate – 3.87902 inches long. . .

–The Water Babies,
Charles Kingsley

Not every rational number is a finite decimal, no matter what base we
use. But, as we will show, there are finite decimals as close as we need
to any given rational number. This means finite decimals can have great
everyday utility. After all, no measurement is perfect, it is always to the
nearest thousandth of an inch, or the nearest millionth, or some such. But
then if measurements are all approximate things, which can be expressed
by finite decimals, and if rational numbers can be suitably approximated
with finite decimals, then finite decimals are all that need enter into our
everyday calculations. Finite decimals are enough, as the prevalence of
pocket calculators indicates.

What we will show is that, for any rational number x, there is a base n
finite decimal as close to x as we want. That is, if you specify a ‘degree of
closeness’ (some small rational number ε other than 0) we can find a base
n finite decimal within ε of x.

To begin with, we simplify our job a little. The degree of closeness, ε , can
be any non-zero rational number, say y

z . We show it is enough to consider
those in which the numerator is 1. Well, since ε, or y

z , is not 0, y is not 0.
Then, using the Archimedian Order property of the whole number system,
Theorem 3.8.2, there is a whole number m such that m · y > z. From this
we get that 1

m < y
z . Consequently, if we can find a finite decimal within 1

m
of x, we are also certain of being within y

z , or ε, of x too. Thus it is sufficient
to consider only those ‘degrees of closeness’ that can be expressed in the
form 1

m , with a numerator of 1.
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One more simplification before we get to the heart of the matter. Above
we simplified the numerator of our ‘degree of closeness’ expression; now we
simplify the denominator. We show it is enough to consider only those in
which the denominator is a power of n.

Well, consider 1
m . The whole number m has a base n name, say w. Thus

(w)n = m. Say the length of w is p. Now consider the base n name consisting
of 1 followed by p 0’s. This is a proper name of length p+ 1 hence, by our
methods of comparing numbers using place value names, it must name a
bigger number than w names. But repeated use of Exercise 4.2.4 (actually
an induction argument is involved) shows that 1 followed by p 0’s is a base
n name for np. Thus np > (w)n = m. From this it follows that 1

np <
1
m .

Then, if we can find a finite decimal within 1
np of x, we are sure of being

within 1
m of x as well. Thus we actually only consider those ‘degrees of

closeness’ that can be expressed in the form 1
np for some p. Actually, this

agrees with common practice where we talk about ‘nearest hundreth’, or
‘nearest thousandth’, etc.

Theorem 6.4.1 Let a
b be any rational number and let p be any whole num-

ber. There is a base n finite decimal f within 1
np of a

b . More precisely, there
is a base n finite decimal f such that

a

b
− (f)n <

1
np
.

Proof Long divide b into a · np (Theorem 3.10.1) getting quotient q and
remainder r. Thus a · np = q · b+ r and r < b. Now

a

b
=

a·np

b
· 1

np

=
q·b+r

b
· 1

np

=
(
q·b

b
+

r

b

)
· 1

np

=
(
q +

r

b

)
· 1

np

= q · 1

np
+

r

b
· 1

np

=
q

np
+

r

b
· 1

np
.

Now q
np is a base n decimal fraction, and it differs from a

b by r
b · 1

np . But
recall, r < b so

r

b
< 1

r

b
· 1

np
<

1

np
.
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So we have found a base n decimal fraction, and hence a base n finite
decimal, within 1

np of a
b . This concludes the proof.

We should say something about how such approximations are calculated
in practice. Consider the base 10 problem of finding a finite decimal within

1
1000 = 1

103 of 1
3 . By the method of proof given above, we should long divide

3 into 1 · 103 = 1000. Using the customary arrangement, the work appears
thus:

333
3)1000

9
10
9
10
9
1

Note that this is a whole number problem. We have our quotient q = 333.
Now the proof says the desired finite decimal is one corresponding to 333

103

or, simply, .333.
In practice, the two stages (determining q and locating the decimal point)

are combined into a single algorithm, and what one sees on paper is just

.333
3)1.000

9
10
9
10
9
1

You should have no trouble in accounting for what is happening here. The
approximation, .333, is generally referred to as a 3-place approximation, for
obvious reasons.

One last observation. We saw in the previous section that the result of
dividing one base n finite decimal by another need not produce a base n
finite decimal. It will, however, always produce a rational number, and this
rational number can be approximated by base n finite decimals as closely as
we like, using the method of this section. In fact, as the reader will readily
see in the exercises, this is nothing more than what is usually called finite
decimal division.

Exercises

Exercise 6.4.1
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1. Find a 4-place approximation to 1
11 in base 2.

2. Find a 3-place approximation to 1
5 in base 12.

Exercise 6.4.2 Show that between two distinct rational numbers there is
a base n finite decimal. Hint: By Exercise 5.13.5, between any two rational
numbers a and b there is another rational number c. Now, approximate to
c ‘suitably closely.’

Exercise 6.4.3 In base 10, compute a 3-place approximation to the ratio-
nal number 2.81÷ 3.656.

Exercise 6.4.4 In base 2, compute a 5-place approximation to 11.01 ÷
1.101.

6.5 Basic arithmetic

. . . this discovery of decimal numbers. . . does away with all these
difficulties. To speak briefly . . . all computations of the type of the
four principles of arithmetic – addition, subtraction, multiplication
and division – may be performed by whole numbers with as much
ease as in counter-reckoning.

–La Disme
Simon Stevin

As might be expected, all the elementary arithmetic algorithms are much
simplified if finite decimals are used. We briefly sketch why.

Comparing numbers
Exercise 6.2.3 says we can always append 0’s to the end of the decimal

part of a finite decimal without affecting what it names. Consequently,
we can always arrange things so that any two finite decimals we want to
compare have the same length decimal parts. Also recall that in Chapter
Four rules were presented for comparing whole numbers, using their base
n names.

Now we give three different methods for comparing finite decimals. All
are minor variations on the same theme, but the third, because of the way
it is stated, can be generalized in a manner the other two can not. It will,
in fact, form the basis of our treatment of real numbers in the next chapter.

Suppose w1.z1 and w2.z2 are two base n finite decimals, with z1 and z2

of the same length.

Method I If (w1z1)n < (w2z2)n then (w1.z1)n < (w2.z2)n.
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Example (101.001)2 < (101.010)2 because, as whole numbers,
(101001)2 < (101010)2.

The justification for this method of comparison is simple. We use Theo-
rem 6.2.4, and our methods of comparing fractions from Chapter Five. Say
both z1 and z2 are of length k. Then (w1.z1)n < (w2.z2)n is equivalent to
(w1z1)n
nk

< (w2z2)n
nk

which is equivalent to (w1z1)n < (w2z2)n.

Method II This time we need two rules.

1. If (w1)n < (w2)n then (w1.z1)n < (w2.z2)n.

2. If (w1)n = (w2)n but (z1)n < (z2)n then (w1.z1)n < (w2.z2)n.

In words, rank finite decimals by their whole number parts if they are
different, otherwise go by their decimal parts.

Method III Again there are two rules.

1. If (w1)n < (w2)n then (w1.z1)n < (w2.z2)n.

2. If (w1)n = (w2)n then, start at the decimal point and move digit by
digit to the right to locate the first term where the two decimal parts
have different digits. The one with the bigger digit there is the one
that names the bigger number.

This method is just Method II again, but with clause 2 expanded by
incorporating certain whole number comparison techniques.

Addition and Subtraction
Suppose we have two base n finite decimals that we want to add (more

precisely, we want to find a name for the sum of the numbers they name).
To begin with, we can always arrange things so both finite decimals have

the same length decimal parts, by appending 0’s to the end of the shorter
one if necessary. Let us suppose this has been done. Then, say we have the
base n finite decimals w1.z1 and w2.z2, both k-place. Well, very simply,
(w1.z1)n + (w2.z2)n = (w3.z3)n where w3.z3 is also a k-place finite decimal
in which the string of digits, w3z3, is the result of carrying out the whole
number addition that arises if we simply ignore decimal points, that is,
(w3z3)n = (w1z1)n + (w2z2)n.

The justification here is trivial. Using Theorem 6.2.4, and Theorem 5.6.1,

(w1.z1)n + (w2.z2)n =
(w1z1)n

nk
+

(w2z2)n

nk

=
(w1z1)n+(w2z2)n

nk

and this is a base n decimal fraction that corresponds to the base n finite
decimal w3.z3 described above.
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As just described, there is a certain preparation step of appending 0’s so
that the two finite decimals have the same length decimal parts. In practice
this is usually simplified to: “line up the decimal points.” Then one treats
the absence of a decimal part digit as the equivalent of a 0. Clearly this
amounts to little more than a minor variation on what was described above.

Subtraction is handled in virtually the same way as addition (except
that a whole number subtraction is performed, instead of a whole number
addition). We skip details.

Multiplication
This time it is not desirable to arrange things so that decimal parts are

the same length. Now, the rule is as follows.

(w1.z1)n · (w2.z2)n = (w3.z3)n

where

1. w3z3 arises from a whole number calculation in which decimal points
are ignored, that is, (w3z3)n = (w1z1)n · (w2z2)n, and

2. the length of z3 is the length of z1 plus the length of z2.

The justification is quite straightforward, using Theorem 2.10.2. Say z1

is of length k and z2 is of length p. Then

(w1.z1)n · (w2.z2)n =
(w1z1)n

nk
· (w2z2)n

np

=
(w1z1)n·(w2z2)n

nk·np

=
(w3z3)n

nk+p

Exercises

Exercise 6.5.1 Justify Method II.

Exercise 6.5.2 Add, in base 5,

1. 14.312 + 1.13

2. .013 + .102

Exercise 6.5.3 Add, in base 2,

1. 10.101 + 1.1

2. 10.01 + .101

Exercise 6.5.4 Add, in base 12,

1. 9.te+ 1.9
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2. 10.1t+ .03

Exercise 6.5.5

1. Subtract, in base 5, 14.203− 3.41

2. Subtract, in base 2, 101.11001− 11.111011

Exercise 6.5.6

1. In base 5, multiply .134× 2.01

2. In base 2, multiply 1.01× 11.001

3. In base 12, multiply 1.t2× te.001
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Real Numbers

7.1 Introduction

In finite decimals we have an ideal number system for everyday. It is easy
to use, and we can be as accurate as we need to be. But this is not a
good system for the general development of mathematics; there just aren’t
enough numbers.

We illustrate this with an ancient example. Suppose we have a square
one foot on a side; how long is the diagonal? Now any ‘square’ we could
actually draw would only be an approximate square since our instruments
and tools for drawing, however good, are not perfect. And we can only
measure the diagonal of a ‘square’ we have drawn to within the limits
of accuracy of our measuring equipment, to the nearest millionth of an
inch, say, and finite decimals will suffice for expressing the result of such
a measurement. But in mathematics we do not work this way. Rather we
imagine ideal, perfect squares, and we deduce our results about them from
basic principles of geometry. We may draw pictures to help us think but we
don’t reach our results by measuring them. Now, in this ideal sense, how
long is the diagonal of a square one foot on a side?

�
�
�
�
�
�
��

x

1

1

By the Pythagorean theorem, x2 = 12 + 12, so x2 = 2. That is, the
length of the diagonal is a number whose square is 2. But, there is no such
number in any number system we have studied thus far. Since all the kinds
of numbers we have seen thus far have their counterparts in the system of
rational numbers, what we are really saying is: there is no rational number
whose square is 2. We give a proof of this that is 2500 years old.

First we need a precise definition of odd numbers.

Definition 7.1.1 An odd number is one more than an even number. An
even number is twice some whole number.
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Then 2n is always an even number, for any whole number n, and 2n can
represent any even number we like by an appropriate choice of n. Then too,
2n + 1 is always an odd number, and any odd number can be put in this
form by properly choosing a whole number n.

Lemma 7.1.2 The square of an odd number is odd.

Proof Pick any odd number. It can be represented as 2n + 1. Square it
(2n+ 1)2 = 4n2 + 4n+ 1 = 2(2n2 + 2n) + 1. Now 2(2n2 + 2n) is even, since
it is twice a whole number, so 2(2n2 + 2n) + 1 is odd since it is one more
than an even number.

Theorem 7.1.3 There is no rational number whose square is 2.

Proof Suppose there did exist a rational number whose square was 2. We
derive a contradiction from this, which shows it is impossible.

If there were a rational number whose square was 2, it could be named
by a fraction. Form a collection, S, of whole numbers as follows. Put a
whole number y into S if y is the denominator of some fraction x/y whose
square is (equivalent to) 2. By our supposition, S is not empty, so by the
Well-Ordering Theorem, S has a least member, call it b. Then, there is
a fraction a/b whose square is 2, but there is no fraction with a smaller
denominator whose square is 2. In particular, then, not both a and b can
be even numbers, because if they were, we could ‘cancel’ a factor of 2 in
the numerator and denominator of a/b to get an equivalent fraction with
a smaller denominator, whose square would also be 2.

To sum up things thus far: we have a fraction a/b whose square is 2, and
not both a and b are even whole numbers.

We proceed from here as follows.(a
b

)2

=
a2

b2

so

a2

b2
= 2

a2 = 2b2.

But 2b2 is even (it is twice something). So a2 is even. Then a is even, for
by the lemma, if a were odd, a2 would also be odd. Since a is even, it is
twice some whole number, say a = 2k.

Then a2 = (2k)2 = 4k2. Substituting, 4k2 = 2b2 and cancelling, 2k2 = b2.
But 2k2 is even, so b2 is even. Then by the lemma again, b is also even.
We have our contradiction: not both a and b are even, a is even, b is even.
This is impossible, but it must happen if a/b existed, so it doesn’t. This
concludes the proof.
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It turns out this is not an isolated situation. If rational numbers are the
only numbers we have, there are many geometric line segments we can’t
assign a numerical length to. In fact, in a sense that can be made precise in
set theory, there are more lines we can’t measure with rationals than there
are lines we can.

Greek mathematicians 2500 years found it a disturbing result that there
is no rational number whose square is 2. Originally, Greek mathematics
was based on the notion that rational numbers were enough to measure
all line segments. When the proof above was discovered it led to a crisis
in Greek mathematics which was finally straightened out when Eudoxus
(c.408 - c.355 BC) created his theory of proportions, the details of which
we won’t go into here.

Basically there are only two ways out of the difficulty; create a larger
number system, or accept that there are not enough numbers and develop
mathematics without them. We do the first, the Greeks did the second.
As a result, High School geometry and Greek geometry are not really the
same. Take the Pythagorean theorem as an example: the square of the
hypotenuse of a right triangle is equal to the sum of the squares of the
other two sides. We take this to mean: c2 = a2 + b2 where c, a and b are
numbers, measuring the lengths of the hypotenuse and the sides. A Greek
would understand this to say: squares drawn on the sides of a right triangle
can be combined into a square equal to one drawn on the hypotenuse. The
difference here is noticable but not great. But for more recent mathematics
the two approaches would lead to vastly different formulations. Indeed,
probably much present day mathematics would never have been created if
the Greek approach were still followed.

It is our job in this chapter to present the modern way out of the dif-
ficulty; to create a larger number system. The system is called the real
number system. The name is a little misleading, since they are no more
real than other kinds of numbers. The name dates from a time when com-
plex numbers were not well understood, and there was thought to be a
great gulf between ‘real’ results and ‘imaginary’ ones.

In the 19th century real numbers were first defined properly and studied
rigorously, though they had been used informally for centuries before that
time. Two equivalent approaches, one due to Dedekind (1831-1916) and
one due to Cantor (1845-1918) were developed. We have chosen to follow
yet a third approach, defining real numbers to be infinite decimals. We feel
this is an easier approach to follow, but unlike the others, it doesn’t go
directly from rational numbers to real numbers, but rather from rationals
to finite decimals to real numbers. This explains the presence of Chapter
6. Properly seen, though, our approach is really a variant of Cantor’s, but
we do not develop the relationship here.
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Exercises

Exercise 7.1.1 Using the definition, prove that every whole number is
either odd or even, and no whole number can be both.

Exercise 7.1.2 Above we proved
√

2 was not a rational number. Now
prove

√
3 is not a rational number in the following analogous way. First

call a number a triple (analog of even) if it is of the form 3n. Call a number
a non-triple (analog of odd) if it isn’t a triple, and hence if it is one of the
forms 3n+ 1 or 3n+ 2.

1. Prove: the square of a non-triple is a non-triple.

2. Now, if there were a rational whose square was 3, it could be repre-
sented as a fraction in lowest terms. Suppose there is a fraction a/b
such that

a2

b2
= 3

and a and b have no common factors (in particular, not both a and
b are triples). Derive a contradiction.

Exercise 7.1.3 Prove
√

5 is not a rational number.

Remark The following general result (or rather, its geometric counter-
part) was known to Euclid: if

√
n is not an integer, it is not a rational

number either.

7.2 A Word of Warning

The uses of real numbers are quite different from the uses of finite decimals.
Finite decimals simplify calculations, but real numbers simplify theories.
For example, with real numbers available we can say every line segment
has a numerical length, and then many geometric properties become simple
counterparts of elementary number facts. For this we need the existence of
the entire real number system and its general properties.

But real numbers are not everyday tools. We do not use them for calcu-
lation the way we use rational numbers. In fact, if real numbers turn up at
all we generally replace them with rational numbers that are ‘sufficiently
close.’ We use finite decimal approximations to infinite decimals when we
build bridges.

To give a familiar example, the entries found in trigonometry tables or
given by calculators are finite decimals. These are not the exact values, but
they are near enough for practical purposes. The true values are infinite
decimals which can not be written down. But the supposed existence of
these infinite decimal values simplifies the theory of trigonometry consid-
erably.
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So we are no longer interested in computations, but in completeness for
mathematical purposes. In fact, we will somtimes find ourselves beyond all
possibility of computation even by the kind of approximate methods we
have been discussing. Some of our proofs below will conclude that a real
number having certain properties exists, but they will provide no means of
actually computing such a number or even approximating it. In some cases
this won’t be a defect of the particular proof; means of computing may not
exist. This is inherent in the nature of the real number system. If we want
a ‘complete’ number system with a reasonably uncomplicated theoretical
structure, loss of computational ability is the price we must pay.

There are some mathematicians who object to such proceedings for philo-
sophical reasons. They say it is meaningless to assert that a number exists
unless there are means of computing it, or at least of computing a sequence
of better and better approximations to it. To such mathematicians the
general theory of real numbers we present is wrong.

Until recently, alternative theories of real numbers which are more con-
structive were very complicated and ‘unnatural’. There is now a construc-
tive alternate which works smoothly (see Foundations of Constructive Anal-
ysis, Errett Bishop, McGraw Hill, 1967, especially the Preface and Chapter
1). Time will tell to what extent it gains general acceptance. The theory
we present is the one accepted and used by most mathematicians today.

7.3 Infinite Decimals Informally

We want to create an extension of the system of rational numbers in which,
among other things, all numbers have square roots, and cube roots, and
so on. To do this we must say what sort of things we are going to call
numbers, and what we mean by addition, subtraction, multiplication, etc.
The system we create is called the system of real numbers. We are going to
take real numbers to be infinite decimals, and we will see that the choice of
base is not important. In fact, we will develop systems of infinite decimals
in all bases at the same time, but independently of each other. We begin
our discussion with base 10, which is most familiar.

In the system of base 10 finite decimals, no number exactly represents
1
3 . But we can find a sequence of closer and closer approximations:
.3
.33
.333
.3333
etc.

Now we create a new object, an infinite decimal,
.3333 . . .

which we can intuitively think of as a ‘limit’ to which the successive finite
decimal approximations above tend. (The string of dots is meant to indicate
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that the sequence of digits goes on forever.) .3333 . . . is not anything we
have discussed before. It is not a fraction, it is not a finite decimal. Still,
it is a rather natural sort of object to consider, and we have a reasonable
idea of how we want it to behave. For instance, we would want to define
addition of infinite decimals so that

.333 . . . + .333 . . . = .666 . . .

We will begin formal considerations of infinite decimals in the next section,
for now we carry on an informal discusssion.

If we assume we can operate with infinite decimals in a reasonable way,
seemingly strange things happen. For instance, we can show

.70000 . . . = .69999 . . .

To see this, suppose we denote .69999 . . . by N :

N = .69999 . . .

One would expect that multiplying by 10 should move the decimal point
one place to the right. Thus

10N = 6.9999 . . .

100N = 69.999 . . .

Now, if we subtract 10N from 100N , the decimal parts of 69.999 . . . and
6.999 . . ., being the same, can be expected to cancel. Thus

100N = 69.000 . . .
−10N = −6.999 . . .

90N = 63.000 . . .
so

9N = 6.3000 . . .
N = .7000 . . .

A little more thought shows that this is not as strange as it seems to be
at first sight. Things must be possible with infinite decimals which have no
counterpart with finite decimals. For instance, if we wish to subtract the
finite decimal .001 from .700,

.700
− .001

We might begin by borrowing, that is, we would rewrite .700 as .700 =
.6(10)0 = .69(10). Then the problem becomes
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.69(10)
− .001

.699
.69(10) is not a finite decimal in a strict sense, but only a temporary expres-
sion for the purpose of subtraction. But .7 = .70 = .700 = .7000 etc., and
by borrowing as above we see that the following expressions all represent
the same number:

.7

.6(10)

.69(10)

.699(10)

.6999(10)
etc.

We can think of these as tending to an infinite decimal, and clearly it has
to be .69999 . . ..

Looking at it slightly differently, with the finite decimal .700 the ‘most’
borrowing we can do is .69(10), but with the infinite decimal .7000 . . . we
are permitted unlimited borrowing:

.70000 = .6(10)000 . . .
= .69(10)000 . . .
= .699(10)000 . . .
= .6999(10)000 . . .

etc.
If we imagine ourselves permitted infinitely many steps, we can rearrange
.7000 . . . into .6999 . . ..

Something else you might think about, if .69999 . . . and .70000 . . . are
not to be equal, how far apart are they? This is related to the borrowing
discussion we just presented.

We have not proved .7000 . . . and .6999 . . . are equal. Indeed we can not
do so since we don’t yet have any formal theory of infinite decimals. Still,
all the things we did are things we would like to be able to do when such
a theory is developed. We are forced to conclude that: If we are to have a
reasonable theory of (base10) infinite decimals we must identify .69999 . . .
and .70000 . . ..

This is not the only such situation. .360000 . . . and .359999 . . . will have
to be identified, also 1.0000 . . . and .999 . . .. In fact, whenever an infinite
decimal ‘corresponds’ to a finite decimal this will come up. And something
similar happens in all other bases as well. Later, when we begin our formal
development, we will have to deal with this problem at the start.

Exercises

Exercise 7.3.1 Give an informal argument that .36000 . . . and .359999 . . .
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must be identified (in base 10) by setting N = .359999 . . . and proceeding
as we did above.

Exercise 7.3.2 In base 2, give an informal argument that 1.000 . . . and
.111 . . . must be identified by setting N = .111 . . . and proceeding as we
did above.

Exercise 7.3.3 In base 4 find another infinite decimal which ought to
represent .210000 . . ..

Exercise 7.3.4 Find a base 5 fraction which ought to be equivalent to the
base 5 infinite decimal .2444 . . ..

7.4 Infinite sequences

Starting with this chapter we make heavy use of what is essentially a new
mathematical concept in this book, an infinite sequence. An infinite dec-
imal will involve, in its decimal part, an infinite sequence of digits, and
we will even need infinite sequences of infinite decimals. In this section we
say briefly what infinite sequences are. We do not formally develop their
properties; an informal description is enough for our purposes.

An infinite sequence is simply an arrangement of certain things in a
first, second, third, etc. order. More precisely, it is an assignment of some
object to each counting number. The thing assigned to 1 is called first,
the thing assigned to 2 is called second, and so on. More precisely yet, an
infinite sequence is simply a function whose domain is the entire collection
of counting numbers (see Chapter 2.5).

We often use the following notation for infinite sequences. We denote the
sequence itself by some letter, s say, and the first term of it (the object
assigned by it to the number 1) by s1, the second by s2, etc. Schematically,
we may write

s is s1, s2, s3, . . .

If each of the terms of the infinite sequence is a member of a collection S,
we simply say we have an infinite sequence of members of S.

A familiar example of an infinite sequence is provided by an infinite
decimal. The decimal part may be considered to be an infinite sequence of
digits. This is an example that will concern us for much of the rest of this
book. If we are talking about such an infinite sequence we will generally
omit commas in our schematic representation, writing just

s1s2s3 . . .

for the decimal part of an infinite decimal, taking s1 to be the digit in the
first decimal place, s2 to be the digit in the second decimal place, and so
on.
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The Well Ordering Principle (Theorem 2.13.1) is used constantly in work-
ing with infinite sequences. Its use is so frequent that it is often overlooked.
A typical example: suppose

s1, s2, s3, . . .

is an infinite sequence of counting numbers. If any of the terms are even,
there must be a first even term of the sequence. The formal reasoning
involved here is this: let C be the collection of counting numbers k for which
sk is even; we are supposing C is not empty, so C has a least member, say
q. Then sq is the first even term of the infinite sequence. It is this kind
of reasoning that justifies statements like: if not every decimal place of an
infinite decimal is 0, then there is a first non-zero decimal place.

A finite sequence is an arrangement of things in a first, second, . . . , last
order. More precisely, it is an assignment of things to some initial string of
counting numbers, say to 1,2,3,. . . ,n. We use similar notational conventions
for finite sequences, for example writing s1,s2,. . . ,sn to denote the finite
sequence whose first term is s1,. . . , and whose last term is sn. We say the
length of the finite sequence s1,s2,. . . ,sn is n.

If an infinite sequence is given, its first n terms constitute a finite se-
quence. If we are given the infinite sequence

s1, s2, s3, . . .

and we write
s1, s2, . . . , sn

we mean the finite sequence that resuls when only the first n terms of the
infinite sequence are retained.

We use the same notational convention with finite sequences of digits that
we do with infinite ones: we write them without commas thus: s1s2 . . . sn.
We assume throughout this chapter that finite sequences of digits, as just
described, obey all the conditions for whole number names set forth in
Chapter Four, using the ‘natural’ notion of concatenation. In a formal de-
velopment of the sequence concept, this would need proof; we are taking it
for granted in order that we may get on with the development of the real
number system itself.

7.5 Infinite decimals formally

By a base n infinite decimal we mean an ordered pair consisting of a base n
whole number name, and an infinite sequence of base n digits. We follow a
notational convention similar to the one we used for finite decimals. Thus
we write

w.a1a2a3 . . .
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to denote the infinite decimal with whole number name w, and infinite se-
quence of digits a1a2a3 . . .. We call w the whole number part and a1a2a3 . . .
the decimal part. We speak of the first decimal place, the second decimal
place, and so on, in the usual way.

For example, 3.1415926535 . . . is a base 10 infinite decimal. Likewise
1101.111001011011 . . . is a base 2 infinite decimal. But be careful; a base
2 infinite decimal is also a base 10 infinite decimal, but it means differ-
ent things in the two bases, just as 11 names different whole numbers in
base 2 and base 10. The choice of base must be clear each time. Either
we will say in words what base we are using, or we will write something
like (1101.111001011011 . . .)2 to indicate the base. If we just say ‘infinite
decimal’ with no base mentioned, it means the exact base doesn’t matter.

Please note that we are using the base-indicating subscripts somewhat
differently than in earlier chapters. For finite decimals, (10.01)2 was a cer-
tain rational number, the one named by the base 2 finite decimal 10.01.
But for infinite decimals, the subscript in (10.011 . . .)2 merely tells us we
will be using the decimal according to base 2 rules (yet to be specified).

Next we must take care of the problem raised earlier, that certain infinite
decimals will have to be identified, for example, in base 10, .7000 . . . and
.6999 . . .. We do this by choosing one as standard and thinking of the other
as a non-standard version of it.

If a base 10 infinite decimal ends with an infinite sequence of 9’s (for
example, .69999 . . .) we say it is in non-standard form. If we take an infinite
decimal in non-standard form, change the digit just before the string of 9’s
to the next higher digit, and change all the 9’s to 0’s, we have an infinite
decimal in standard form. (For example, putting .69999 . . . into standard
form gives us .70000 . . .). If d is an infinite decimal in non-standard form
and d′ is the result of putting d into standard form, we say d′ is the standard
form of d and d is the non-standard form of d′. (For example, .7000 . . . is
the standard form of .69999 . . ., and .69999 . . . is the non-standard form of
.70000 . . .). If d′ is the standard form of d, we write d = d′, taking them to
be equal by definition. (For example, .69999 . . . = .70000 . . ..)

We also introduce similar notions for other bases. For example, in base
5, 3.124444 . . . is in non-standard form, while 3.13000 . . . is the standard
form of it.

Exercises

Exercise 7.5.1

1. Give an example of a base 2 infinite decimal in non-standard form.

2. Do the same for base 12.

Exercise 7.5.2 Give a proper definition of standard form for base n.
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7.6 Finite decimals and infinite decimals

In Chapter 6 we discussed finite decimals, which were rational numbers of
a particular kind. Now we are discussing infinite decimals, loosely infinite
sequences of digits with a decimal point someplace. No finite decimal is
an infinite decimal. They are different sorts of objects entirely. But, some
infinite decimals will behave like finite decimals. For example, the finite
decimal 3.279 and the infinite decimal 3.2790000 . . . will behave similarly
for computation purposes.

To keep the distinction between finite decimals and infinite decimals
clear, we will continue to call expressions like 3.279 finite decimals, and we
will introduce another name for expressions like 3.2790000 . . ..

Definition 7.6.1 A base n terminating decimal is a base n infinite decimal
ending with an infinite sequence of 0’s.

For example, 3.2790000 . . . is a terminating decimal. Notice that termi-
nating decimals are always in standard form. They are the only infinite
decimals that also have non-standard forms.

We call 3.2790000 . . . the terminating decimal associated with the finite
decimal, 3.279. More generally,

Definition 7.6.2 Let d be some base n finite decimal. The terminating
decimal produced by following d with an infinite string of 0’s is called the
terminating decimal associated with d, and is denoted by d∗.

For example, if d = 3.279 then d∗ = 3.2790000 . . .. Notice that 3.279,
3.2790, 3.27900, etc. all have the same terminating decimal associated with
them.

One of the things we will have to prove is that finite decimals and their
associated terminating decimals do, in fact, behave alike in their respective
number systems.

7.7 Order of infinite decimals

In Section 6.5, we presented a discussion of the ordering of finite decimals.
We are going to base our definition of an ordering relation for infinite
decimals on that discussion, more precisely we generalize what we called
Method III.

Let A and B be two distinct base n infinite decimals in standard form.
We describe a procedure for comparing them.

First, if the whole number parts of A and B are different, we define the
one with the bigger whole number part to be the bigger infinite decimal.

Second, if the whole number parts of A and B are the same, then starting
at the decimal points of A and B, find the first decimal place where A and
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B have different digits. We define the one with the bigger digit to be the
bigger infinite decimal.

If A is bigger than B, we write A > B, or B < A.
For example, in base 10, 31.6835 . . . > 12.9635 . . . because 31 > 12. Also,

in base 10, 7.63943 . . . > 7.62534 . . . because the whole number parts are
the same, as are the first decimal places, but 3 > 2 in the second decimal
place. Likewise, in base 2, 101.1101101 . . . > 101.1011010 . . ..

To compare infinite decimals not in standard form, first put them into
standard form, then compare them.

Now we derive two basic properties of this ordering relation.

Theorem 7.7.1 (Trichotomy law) For any base n infinite decimals A
and B, exactly one of the following holds: A > B, A = B, B > A.

Proof We may assume that A and B have already been put into standard
form. Since they are base n infinite decimals they look like this:

A = wA.a1a2a3a4 . . .

B = wB .b1b2b3b4 . . .

where wA and wB are base n whole number names, and each ai and bi is
a base n digit.

Suppose A 6= B; we show one of A > B or B > A must be the case. Now,
if A and B are different, either they have different whole number parts, or
else they differ at some decimal place. If wA and wB are different, either
wA > wB or wB > wA. In the first case A > B and in the second B > A.
Otherwise wA = wB . Then consider the decimal parts of A and B. If there
is some decimal place at which A and B differ, there must be a first such
place. Say A and B agree at each decimal place up to the ith and differ
there; ai 6= bi. Either ai > bi or bi > ai. In the first case, A > B, and in
the second B > A.

So far we have shown one of A > B, A = B and B > A must happen.
Now we show two of them can’t happen at the same time.

Suppose A > B and also B > A. If A and B have different whole number
parts, since A > B we would have wA > wB , and since B > A we would
have wB > wA. But this contradicts the trichotomy law for whole numbers.
So the whole number parts must be the same. Yet A > B, so there must
be a first decimal place where they are different, say the ith, ai 6= bi.
Since A > B we must have ai > bi, but also since B > A we must have
bi > ai, and this again contradicts the trichotomy law for whole numbers.
Conclusion: we can’t have A > B and also B > A.

Theorem 7.7.2 (Transitivity) Let A, B and C be base n infinite deci-
mals. If A > B and B > C then A > C.
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Proof Again we may assume A, B and C have been put into standard
form. Let us say

A = wA.a1a2a3a4 . . .

B = wB .b1b2b3b4 . . .

C = wC .c1c2c3c4 . . .

where wA, wB and wC are base n whole number names, and ai, bi and ci
are base n digits.

Suppose first that wA 6= wB . Since A > B we must have wA > wB . Since
also since B > C, wC can’t be smaller than wB , so wB ≥ wC . Then by
transitivity for whole numbers, wA > wC , so A > C. A similar argument
works if wB 6= wC .

Now suppose wA = wB = wC . Since A > B, there is a first decimal place
at which A and B differ, say the jth. Then aj > bj , but up to the jth place
A and B are the same. Similarly since B > C there is a first decimal place
at which B and C differ, say the kth. Then bk > ck, but up to the kth place
B and C are the same. Now by the trichotomy law for counting numbers
we have three possibilities: j = k, k < j or j < k.

Suppose first that j = k. Then A, B and C look like this:

A = wA.a1a2 . . . aj−1aj . . .

B = wA.a1a2 . . . aj−1bj . . .

C = wA.a1a2 . . . aj−1cj . . .

(do you see why?) Then A and C agree up to the jth place, but aj > cj
(since aj > bj > cj , and we have transitivity for whole numbers). Then by
definition, A > C.

Suppose next that j < k. Then A, B and C look like this:

A = wA.a1a2 . . . aj−1aj . . . ak−1ak . . .

B = wA.a1a2 . . . aj−1bj . . . bk−1bk . . .

C = wA.a1a2 . . . aj−1bj . . . bk−1ck . . .

(again, do you see why?) Then A and C agree up to the jth place, but
aj > bj = cj , so A > C.

Finally, if k < j, A, B and C look like this:

A = wA.a1a2 . . . ak−1ak . . . aj−1aj . . .

B = wA.a1a2 . . . ak−1ak . . . aj−1bj . . .

C = wA.a1a2 . . . ak−1ck . . . cj−1cj . . .

(Why?) Then A and C agree up to the kth place, but ak = bk > ck, so
again A > C.

This concludes the proof.
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Definition 7.7.3 We write A ≥ B if A > B or A = B. Likewise we write
A ≤ B if A < B or A = B.

For example, 3.14159265 . . . ≥ 3.109635 . . . and also 3.14159265 . . . ≥
3.14159265 . . ..

Next we show that as far as the ordering relations are concerned, finite
decimals and their associated terminating decimals behave alike. Recall
that if d is a finite decimal, d∗ is its associated terminating decimal.

Theorem 7.7.4 Let d1 and d2 be base n finite decimals. Then:

1. d1 > d2 if and only if d∗1 > d∗2

2. d1 = d2 if and only if d∗1 = d∗2.

Proof Part 1) is immediate from the discussion in Section 6.5 on the or-
dering of finite decimals, and our definition of order for infinite decimals.

Part 2) follows easily from part 1). Suppose d1 = d2 but d∗1 > d∗2 or
d∗2 > d∗1, say the first. Then by part 1) d1 > d2, contradicting the fact that
d1 = d2. Thus if d1 = d2, we must have d∗1 = d∗2. The proof of the converse
is similar.

Between any two rational numbers there is a finite decimal, as you were
asked to show in Exercise 6.4.2. The next theorem, essentially, is a powerful
generalization of this.

Theorem 7.7.5 (Denseness) In base n, if A and B are infinite decimals
with A > B, there is a terminating decimal T with A > T > B. Briefly,
between any two infinite decimals there is a terminating decimal.

Proof For convenience, we give the proof for base 10.
We may suppose A and B are in standard form, and as usual, we write:

A = wA.a1a2a3a4 . . .

B = wB .b1b2b3b4 . . .

Now A > B, and let us say this happens because A and B are the same
out to the nth decimal place, but there A has a bigger digit than B has.
Then our decimals really look like this:

A = wA.a1a2 . . . an−1anan+1 . . .

B = wA.a1a2 . . . an−1bnbn+1 . . .

and an > bn.
Next, not all of bn+1, bn+2, bn+3, etc., can be nines, since then B would

not be in standard form. So, in B, some decimal place after the nth must
not be a 9, say the kth. Then
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B = wA.a1a2 . . . an−1bnbn+1 . . . bk−1bkbk+1 . . .

where bk 6= 9, so of course 9 > bk.
Now consider the terminating decimal

T = wA.a1a2 . . . an−1bnbn+1 . . . bk−190000 . . .

That is, we have changed the kth decimal place of B to a 9, and all later
ones to 0’s. We claim A > T > B.

First,

A = wA.a1a2 . . . an−1anan+1 . . . ak−1akak+1 . . .

T = wA.a1a2 . . . an−1bnbn+1 . . . bk−19000 . . .

and A > T because an > bn.
Next,

T = wA.a1a2 . . . an−1bnbn+1 . . . bk−19000 . . .

B = wA.a1a2 . . . an−1bnbn+1 . . . bk−1bkbk+1 . . .

and T > B because 9 > bk.
This concludes the proof.

This theorem has a corollary of great use which says, roughly, an infinite
decimal is specified completely by saying what finite decimals are smaller
than it. It will enable us to use facts about finite decimals to prove things
about infinite decimals.

Theorem 7.7.6 (Equality) In base n, let A and B be infinite decimals,
and suppose that for each terminating decimal T , A > T precisely when
B > T ; then A = B.

Proof If A 6= B, by the trichotomy law one must be bigger; say A > B.
Then there is a terminating decimal T such that A > T > B. But then
there is a terminating decimal T with A > T but without B > T .

Exercises

Exercise 7.7.1 Rank the following base 5 infinite decimals in order of size
from biggest to smallest:

2.1342401 . . .

31.42312 . . .

2.140000 . . .

31.42203 . . .
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2.13444 . . .

Exercise 7.7.2 Complete the proof of Theorem 7.7.1 by showing we can’t
have A = B and also A > B.

Exercise 7.7.3 Prove the following:

1. if A > B and B ≥ C then A > C

2. if A ≥ B and B > C then A > C

3. if A ≥ B and B ≥ C then A ≥ C

Exercise 7.7.4 Let A = wA.a1a2a3a4 . . . and B = wB .b1b2b3b4 . . . be base
n infinite decimals in standard form. Show A ≥ B if and only if wA ≥ wB
and wA.a1 ≥ wB .b1 and wA.a1a2 ≥ wB .b1b2 etc.

Exercise 7.7.5 Use the method of the proof of Theorem 7.7.5 and produce
a terminating decimal between 1.236418926 . . . and 1.236299783 . . ..

Exercise 7.7.6 Using the same set-up as in the proof of Theorem 7.7.5,
suppose A > B because wA > wB and find a terminating decimal between
A and B.

Exercise 7.7.7 Carry out a proof similar to that of Theorem 7.7.5 for
base 2.

Exercise 7.7.8 Carry out the proof of Theorem 7.7.5 in full generality,
for base n.

Exercise 7.7.9 Suppose that for each terminating decimal T , B > T im-
plies A > T . Prove A ≥ B.

7.8 Addition – an introduction

We want to define addition of infinite decimals so that it agrees with our
intuitions in these matters. Let us try to add two infinite decimals, then see
what is necessary to justify what we would like to do. Consider the base
10 sum

2.43271006 . . .
+ 1.46829102 . . .

Since these are infinite decimals we can’t start at the right end — there is
none. This is the origin of much that is peculiar about infinite decimals. On
the other hand, if we try adding from left to right we get into the problem
of carrying. Still, we can add more and more places of them. For instance,
after adding two places we have
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2.43271006 . . .
+ 1.46829102 . . .

3.89

and, after adding four places we have

2.43271006 . . .
+ 1.46829102 . . .

3.9009

We can easily compute the sums of as many places as we like.

Consider the following sequence of partial sums, arising from this prob-
lem:

2 + 1 = 3
2.4 + 1.4 = 3.8
2.43 + 1.46 = 3.89
2.432 + 1.468 = 3.900
2.4327 + 1.4682 = 3.9009
2.43271 + 1.46829 = 3.90100
2.432710 + 1.468291 = 3.901001
2.4327100 + 1.4682910 = 3.9010010
2.43271006 + 1.46829102 = 3.90100108
etc. etc.

Is there some reasonable sense in which the sequence of finite decimals thus
produced can be said to ‘tend to’ some infinite decimal which we could then
call the sum?

Notice, in the sequence above, the whole number part is always 3. The
first decimal place begins as 8, then becomes a 9 and apparently remains 9.
The second decimal place begins as 9, then becomes and seems to stay 0.
And so on. Suppose we could show that in this sequence, after some initial
number of steps, any given decimal place in fact becomes fixed. Then it
would be reasonable to say the sequence tends to the infinite decimal in
which, say, the third decimal place is the digit the third decimal places of
our partial sums eventually fix on; similarly for the fourth decimal place,
and so on. In this sense the sequence above would tend to an infinite decimal
beginning 3.901001 . . ..

The sequence above of partial sums is non-decreasing, that is, each term
is at least as big as the one before it. It is easy to see this must be the case
for any two infinite decimals we try to add. Also, each term is smaller than
4. In fact, these are the only properties we need to guarantee the sequence
will ‘tend to’ an infinite decimal limit in the sense we have described.
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7.9 The basic theorems on limits

In this section we establish the results needed to add infinite decimals in the
way suggested in the previous section. What we do here is of fundamental
importance and will be used many times in the rest of the book.

Definition 7.9.1 Let A1,A2,A3,A4, . . . be an infinite sequence of base n
infinite decimals. We say the sequence is non-decreasing if A1 ≤ A2 ≤ A3 ≤
A4 ≤ . . .. We say the sequence is bounded from above if there is a base n
infinite decimal D such that A1 ≤ D, A2 ≤ D, A3 ≤ D, etc.

Theorem 7.9.2 (The Limit Theorem)
Let A1,A2,A3,A4, . . . be an infinite sequence of base n infinite decimals
all in standard form, which is non-decreasing and bounded from above.
From some point on in this sequence the whole number parts are all the
same; from some point on in this sequence the whole number parts and
first decimal places are all the same; similarly for the whole number parts,
first and second decimal places; and so on.

Proof Let us say the infinite decimals look like this:

A1 = w1.a11a12a13 . . .

A2 = w2.a21a22a23 . . .

A3 = w3.a31a32a33 . . .

etc.

and let us say D bounds the sequence from above, where

D = wD.d1d2d3d4 . . .

In these, w1,w2, . . . and wD are whole number names in base n notation,
and each aij and dj is a base n digit. (Since we have an infinite sequence
of decimals, each of which involves an infinite sequence of decimal places,
we have had to resort to double subscripts.)
D bounds the sequence from above, that is, A1 ≤ D, A2 ≤ D, A3 ≤ D,

etc., so it must be that w1 ≤ wD, w2 ≤ wD, w3 ≤ wD, etc. (Why?) Then
there are only a finite number of different whole number parts for all of
A1, A2, A3, etc. (there are not more than wD possibilities). So among
them there is a largest (see Theorem 2.13.5.) Let us say this largest whole
number part occurs first in the qth infinite decimal in our sequence, that
is, in

Aq = wq.aq1aq2aq3 . . .

We claim from this point on in the sequence the whole number parts will
all be the same, for the following reasons. No whole number part can be
bigger than wq, since that was chosen to be biggest of all the whole number
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parts. And if Ak occurs later in the sequence than Aq, its whole number
part can’t be smaller than that of Aq, since if it was, that would make Ak
smaller than Aq, Ak < Aq, but our sequence is non-decreasing, and Ak
comes after Aq, so Aq ≤ Ak.

Thus from Aq on, all the infinite decimals in our sequence have the same
whole number parts.

Now we repeat the argument to fix the first decimal place, but starting
with Aq instead of at the beginning, A1.

There are only n base n digits, so among the digits that occur in the
first decimal places of the terms in the sequence Aq, Aq+1, Aq+2, . . . there
must be a biggest. Let us say the first term in our sequence starting from
Aq which has this biggest digit in its first decimal place is Ar, where

Ar = wr.ar1ar2ar3 . . .

We claim from this point on in the sequence, all infinite decimals will have
the same first decimal place too, for these reasons. First, no infinite decimal
after Aq can have a bigger digit in its first decimal place than ar1, since
that was chosen to be biggest of all. And if Ak occurs later in the sequence
than Ar its first decimal place can’t be smaller than that of Ar because that
would make Ak smaller than Ar (both are later in the sequence than Aq,
so both have the same whole number parts), Ak < Ar, but the sequence is
non-decreasing, so Ar ≤ Ak.

Thus from Ar on, all the infinite decimals in our sequence have the same
first decimal places as well as the same whole number parts.

Next, the argument can be repeated to fix the second decimal place, then
the third, the forth, and so on. (Strictly speaking, there is a proof using
induction involved here.)

Definition 7.9.3 Let A1,A2,A3,A4, . . . be the sequence of the theorem
above. There is an infinite decimal that may naturally be associated with
the sequence: that infinite decimal whose whole number part is what the
whole number parts of terms of the sequence eventually settle on, whose
first decimal place is the digit that the first decimal places of terms of the
sequence eventually settle on, and so on. We call this the infinite decimal
generated by the sequence.

Let L be the infinite decimal generated by the sequence. If L is in stan-
dard form we also say it is the limit of the sequence; if L is not in standard
form, we call the result of putting it in standard form the limit.

In these terms, we have shown

Corollary 7.9.4 A non-decreasing sequence of base n infinite decimals (in
standard form) which is bounded from above has a limit.

Example Consider the non-decreasing bounded sequence of base 10 infi-
nite decimals,
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A1 = 21.326812 . . .
A2 = 22.826134 . . .
A3 = 22.828268 . . .
A4 = 22.837192 . . .
A5 = 22.837293 . . .
etc.

Let us suppose that the whole number parts are all 22 from A2 on, that
the first decimal places are all 8’s from A2 on, that the second decimal
places are all 3’s from A4 on, and the third decimal places are all 7’s
from A4 on. Then the infinite decimal generated by this sequence begins
22.837 . . ., and all we can say for sure, given this information, is that the
limit begins either 22.837 . . . or 22.838 . . . (Why?)

Example Consider the non-decreasing bounded sequence of base 10 infi-
nite decimals

A1 = 1.826315 . . .
A2 = 1.937182 . . .
A3 = 1.992813 . . .
A4 = 1.999712 . . .
etc.

Suppose the whole number parts are all 1’s, and each decimal place even-
tually settles on 9. Then the infinite decimal generated by this sequence is
1.9999 . . ., and the limit is 2.000 . . ..

We remarked in Section 2 that non-constructive proofs were inherent in
the theory of real numbers. The proof above is one, yet it is essential to
the development of the theory. Recall, using the terminology of the proof
above, wq was the largest whole number part of any infinite decimal in
the sequence A1,A2,A3,A4, . . .. But to determine the exact size of wq we
have to ‘look at’ all the terms of the sequence to see what the biggest
whole number part actually is, and this process can’t be carried out. We
may accept that such a number must exist, but we may not be able to
determine it for a specific sequence. There is a similar difficulty in knowing
whether the infinite decimal generated by the sequence is in standard form
or not. (Do you see why?) Yet we may assume either it is or it isn’t, even
though we may not know which.

The limit we produced for the sequence A1,A2,A3,A4, . . . in the proof
above has some interesing properties. One is that the terms of the sequence
get arbitrarily close to that limit. We can’t establish this yet, as we have no
definition of subtraction, and hence of closeness. There is another property
that we can discuss now, however.

Definition 7.9.5 Let C be a collection of base n infinite decimals, and let
L be a base n infinite decimal. L is called a least upper bound for C if:
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1. L is an upper bound for C, that is, for each infinite decimal A in C,
A ≤ L,

2. no infinite decimal smaller than L is an upper bound for C; that is, if
L′ is also an upper bound for C we don’t have L′ < L, or equivalently,
we must have L ≤ L′.

Theorem 7.9.6 Let A1,A2,A3,A4, . . . meet the hypotheses of the limit the-
orem. The limit of this sequence is also the least upper bound of the collec-
tion {A1, A2, A3, A4, . . .}.

Proof Let L be the infinite decimal that is generated by the sequence
A1,A2,A3, . . ..

Case 1) L is in standard form. Then L itself is the limit. It should be
clear from the construction of L that the following is the case. The whole
number part of L is as big as the whole number part of any term in the
sequence. The first decimal place of L is as big as the first decimal place
of any term of the sequence having the same whole number part as L.
Similarly for the second decimal place, the third, and so on. Then L must
be as big as any term of the sequence, that is, L is an upper bound.

Next, suppose there is a smaller upper bound L′, which we may assume
is in standard form. L′ < L, and for the sake of argument, let us say this
happens because L and L′ have the same whole number parts, the same
first decimal places, but L′ has a smaller second decimal place than L.
But again, consider the way L was constructed. From some point on in the
sequence A1,A2,A3,A4, . . ., all terms have the same whole number part,
and first and second decimal paces as L. Let us say this happens from As
onward. Then, in particular, As agrees with L through the second decimal
place. But L′ has the same whole number part as L, the same first decimal
place, but a smaller second decimal place, so this makes L′ smaller than
As; so L′ couldn’t have been an upper bound after all. Thus L is a least
upper bound.

Case 2) L is not in standard form. Then the limit is the result of putting
L into standard form, let us call it LS . Rather than work with this case in
detail, we give you Exercise 7.9.3; doing it will illustrate the ideas on which
a proof in Case 2 can be based.

Not every collection of infinite decimals has a least upper bound. Con-
sider, for example, the collection of base 10 terminating decimals {(1)∗,
(2)∗, (3)∗, (4)∗, . . .}. What we do know from our work so far is that if a
collection of infinite decimals can be arranged into a non-decreasing se-
quence which is bounded from above, then it has a least upper bound. But
in fact, least upper bounds exist under more general conditions than this.
The following theorem shows this, with a proof very similar to those we
have seen so far. It is a central fact about real numbers.
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Theorem 7.9.7 (The Least Upper Bound Theorem)
Any (non-empty) collection of base n infinite decimals which has an upper
bound has a least upper bound.

Proof Let C be a collection of base n infinite decimals, which we may
suppose have been put into standard form if necessary, and suppose C has
D = wD.d1d2d3d4 . . . as an upper bound.

No member of C can have a larger whole number part than wD so there
are only a finite number of different whole number parts for members in
C. Let wL be the largest one.

Next, there are only n base n digits, so there must be a largest digit
which occurs as first decimal place of an infinite decimal in C with wL as
its whole number parts; say it is l1.

Similarly there must be a largest digit which occurs as second decimal
place in those members of C beginning with wL.l1. Say it is l2.

In a similar fashion we produce l3, l4, l5, etc. Let L = wL.l1l2l3l4 . . ..
We claim L is the least upper bound of C. There are two cases, depending
on whether or not L is in standard form. We leave the rest to you in
Exercises 7.9.4 and 7.9.5.

The Least Upper Bound Theorem is characteristic of the real number
system. In the rational number system, for example, we can form the col-
lection {1, 1.4, 1.41, 1.41, . . .} of better and better approximations to

√
2.

We will see later that the only possible least upper bound for this collection
is
√

2 itself, and we know that is not a rational number.
Finally, a result that will be of much use in establishing properties of

‘elementary’ arithmetic for infinite decimals.

Theorem 7.9.8 (The inequality theorem)
In base n, let A1,A2,A3,A4, . . . and B1,B2,B3,B4, . . . be two sequences of in-
finite decimals in standard form, both non-decreasing and both bounded from
above. Let the limit of A1,A2,A3, . . . be A, and the limit of B1,B2, B3, . . .
be B. Suppose A1 ≥ B1, A2 ≥ B2, A3 ≥ B3, etc. Then A ≥ B.

Proof Suppose we don’t have A ≥ B, so we do have A < B. Now B is the
least upper bound of {B1, B2, B3, . . .} and by Exercise 7.9.2, if A ≥ B1,
A ≥ B2, A ≥ B3, etc., we would have A ≥ B. So it must be that for some
k we don’t have A ≥ Bk, so we have A < Bk. But A is the least upper
bound of {A1, A2, A3, . . .}, so A ≥ Ak, and by hypothesis, Ak ≥ Bk, hence
A ≥ Bk. This is a contradiction, and concludes the proof.

Exercises

Exercise 7.9.1 Prove that no collection C of base n infinite decimals can
have more than one least upper bound.
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Exercise 7.9.2 Let C be a collection of infinite decimals, with L as a least
upper bound. Suppose A is bigger than or equal to every member of C.
Show A ≥ L.

Exercise 7.9.3 Suppose we are working in base 10. Say the infinite deci-
mal generated by the sequence A1,A2,A3, . . . is L = 1.2399999 . . ., so that
the limit is LS = 1.240000 . . ..

1. Prove LS is an upper bound for the sequence A1,A2,A3, . . ..

2. Prove that if L′ < LS , then L′ must be smaller than some term of the
sequence, and hence not an upper bound. Thus LS is a least upper
bound.

Exercise 7.9.4 Assume L, as given in the proof of Theorem 7.9.7, is in
standard form and prove it is the least upper bound for C.

Exercise 7.9.5 Assume L, as given in the proof of Theorem 7.9.7, is not in
standard form. For simplicity suppose we are working in base 10, and L =
1.239999 . . .. Then the result of putting L in standard form is 1.240000 . . ..
Show this is the least upper bound for C. See Exercise 7.9.3. Note: this is
not really a proof of case 2, but it will amply illustrate the ideas of such a
proof.

Exercise 7.9.6 Use the fact that 1
3 is not a base 10 finite decimal to

construct another example showing the Least Upper Bound Theorem does
not hold for the system of base 10 finite decimals.

7.10 Addition of infinite decimals

We now have developed enough material to carry out the ideas of Sec-
tion 7.8 rigorously. Suppose we want to add in base 10

38.263527 . . .
+ 18.172938 . . .

First we can compute using finite decimals the partial sums:

38 + 18 = 56
38.2 + 18.1 = 56.3
38.26 + 18.17 = 56.43
38.263 + 18.172 = 56.435
38.2635 + 18.1729 = 56.4364
etc. etc.

The sequence of finite decimals we produce is clearly non-decreasing
(since we are including more and more places). If we replace each finite



7. Real Numbers 157

decimal with its associated terminating decimal we get the following non-
decreasing sequence of infinite decimals:

56.00000000 . . .
56.30000000 . . .
56.43000000 . . .
56.43500000 . . .
56.43640000 . . .
etc.

Since all these are terminating decimals they are all in standard form. Also,
the sequence has (39)∗ + (19)∗ = (58)∗ = 58.0000 . . .. as an upper bound.

By the Limit Theorem 7.9.2, this sequence has a limit, which we define
to be the sum of 38.263527 . . . and 18.172938 . . ..

More generally, let A and B be base n infinite decimals, say in standard
form they are

A = wA.a1a2a3a4 . . .

and
B = wB .b1b2b3b4 . . .

First, compute using base n finite decimals:

wA + wB = d0

wA.a1 + wB .b1 = d1

wA.a1a2 + wB .b1b2 = d2

wA.a1a2a3 + wB .b1b2b3 = d3

etc. etc.

Form the associated sequence of terminating decimals, d∗0,d∗1,d∗2,d∗3, . . . It
should be clear that this is non-decreasing. But also, as base n finite deci-
mals

dk = wA.a1a2a3 . . . ak + wB .b1b2b3 . . . bk
≤ (wA + 1) + (wB + 1)

and so, for each k,
(dk)∗ ≤ [wA + wB + 2]∗

thus we have a sequence that is bounded from above, and so, by the Limit
Theorem, d∗0,d∗1,d∗2,d∗3, . . . has a limit.

Definition 7.10.1 We define A + B to be the limit of the sequence of
terminating decimals d∗0,d∗1,d∗2,d∗3, . . . constructed above.

Exercises

Exercise 7.10.1 Use the definition and show, in base 10,

.33333 . . .
+ .33333 . . .

.66666 . . .



158 7.10. Addition of infinite decimals

Exercise 7.10.2 Show in base 10,

.33333 . . .
+ .66666 . . .

1.00000 . . .

Exercise 7.10.3 Show in base 2,

.010101 . . .
+ .101010 . . .

1.000000 . . .

Exercise 7.10.4 In base 10,

.14
+ .28

.42

Now use the definition above to show

.1400000 . . .
+ .2800000 . . .

.4200000 . . .

Remark The previous exercise says, in base 10, (.14)∗ + (.28)∗ = (.14 +
.28)∗. It is a special case of a general result which says finite decimals and
their associated terminating decimals behave alike with respect to addition.

Exercise 7.10.5 In base n, let d1 and d2 be finite decimals. Show d∗1+d∗2 =
(d1 + d2)∗. Suggestion: write d1 as w1.a1a2 . . . ak and d2 as w2.b1b2 . . . bk
and also d1 + d2 as w3.c1c2 . . . ck then construct the ‘partial sum’ sequence
for adding d∗1 and d∗2, beginning at the k+1st term (the first k terms won’t
affect the limit at all).

7.11 Basic properties of addition

As with the other number systems, addition here is commutative and as-
sociative (hence a sum of more than two items can be rearranged), and
addition interacts in useful ways with the ordering relation. Commutativ-
ity is easy to show and we leave the work to you, but associativity is more
difficult. Much of this section is spent proving it.

Theorem 7.11.1 (Commutativity of addition)
If A and B are base n infinite decimals then A+B = B +A.

Theorem 7.11.2 Let A, B and C be base n infinite decimals. If A ≥ B
then A+ C ≥ B + C.
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Proof We may suppose A, B and C are in standard form. Let

A = wA.a1a2a3a4 . . .
B = wB .b1b2b3b4 . . .
C = wC .c1c2c3c4 . . .

A+ C is the limit of the sequence

(wA + wC)∗

(wA.a1 + wC .c1)∗

(wA.a1a2 + wC .c1c2)∗

etc.

and B + C is the limit of the sequence

(wB + wC)∗

(wB .b1 + wC .c1)∗

(wB .b1b2 + wC .c1c2)∗

etc.

A ≥ B so we get (Exercise 7.7.4)

wA ≥ wB
wA.a1 ≥ wB .b1

wA.a1a2 ≥ wB .b1b2
etc.

Now, by already established properties of rational numbers (which includes
the finite decimals)

wA + wC ≥ wB + wC
wA.a1 + wC .c1 ≥ wB .b1 + wC .c1

wA.a1a2 + wC .c1c2 ≥ wB .b1b2 + wC .c1c2
etc.

Since terminating decimals behave like their corresponding finite decimals
with respect to order (Theorem 7.7.4) we have

(wA + wC)∗ ≥ (wB + wC)∗

(wA.a1 + wC .c1)∗ ≥ (wB .b1 + wC .c1)∗

(wA.a1a2 + wC .c1c2)∗ ≥ (wB .b1b2 + wC .c1c2)∗

etc.

Now an application of the Inequality Theorem 7.9.8 gives us

A+ C ≥ B + C.
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Our next main theorem is the associativity of addition. But first we need
a few preliminary results.

Lemma 7.11.3 In base n, suppose U , V and T are finite decimals, with
U 6= 0 and V 6= 0. Suppose also that U + V > T . Then there are finite
decimals a and b such that U > a, V > b, and a+ b > T .

Proof We have three cases.
Case 1) T ≥ U and T ≥ V . Since T ≥ V , T − V is defined in the system

of rational numbers. Now, U + V > T so U > T − V . Let a be a base n
finite decimal between U and T − V (Exercise 6.4.2). Then U > a, and
a > T − V so a + V > T . Also T ≥ U > a, so T − a is defined in the
rationals. Now, a+ V > T so V > T − a. Let b be a base n finite decimal
between V and T − a. Then V > b, and b > T − a so a + b > T . This
completes case 1, the most complicated.

Case 2) T < U . In this case, take b to be 0. Since V 6= 0, V > b. And
take a to be any base n finite decimal between T and U . Then U > a, and
a+ b = a > T .

Case 3) T < V is treated similarly to case 2).

Notice that since finite decimals and terminating decimals behave alike
with respect to order and addition, we immediately have a version of this
lemma for terminating decimals too.

Now the key lemma which will allow us to use the Equality Theorem of
Section 7.7.

Lemma 7.11.4 (Key Lemma) In base n, let A 6= 0∗ and B 6= 0∗ be
infinite decimals and T be a terminating decimal. Suppose A + B > T .
Then there are terminating decimals a and b such that A > a, B > b and
a+ b > T .

Proof We may suppose A and B are in standard form. Let

A = wA.a1a2a3a4 . . .
B = wB .b1b2b3b4 . . .

Now A+B is the limit of the sequence

L0 = (wA + wB)∗

L1 = (wA.a1 + wB .b1)∗

L2 = (wA.a1a2 + wB .b1b2)∗

etc.

and hence also, as we showed in Section 7.9, A+B is the least upper bound
of this sequence. A+B > T , so T is not an upper bound, so for some j we
don’t have T ≥ Lj ; then we do have Lj > T .
A 6= 0∗, so not all of wA, a1, a2, a3 . . . can be 0. The same applies to B.

Choose any k ≥ j so that among wA, a1, . . ., ak is a non-zero term, and
among wB , b1, . . ., bk is a non-zero term.
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Since k ≥ j, Lk > T (since Lj > T and the sequence is non-decreasing).
That is, (wA.a1a2 . . . ak +wB .b1b2 . . . bk)∗ > T . But since finite and termi-
nating decimals behave alike with respect to addition, this says

(wA.a1a2 . . . ak)∗ + (wB .b1b2 . . . bk)∗ > T.

Set
U = (wA.a1a2 . . . ak)∗

V = (wB .b1b2 . . . bk)∗

Then we have arranged things so that U and V are terminating decimals,
neither 0∗, and U + V > T . Also, clearly, A ≥ U and B ≥ V (why?).

Now by the previous lemma (transferred to terminating decimals) there
are terminating decimals a and b with U > a, V > b and a+ b > T . Since
A ≥ U > a, A > a; similarly B > b. This concludes the proof.

Finally we are ready to show

Theorem 7.11.5 (Associativity of Addition)
In base n, let A, B and C be infinite decimals. A+(B+C) = (A+B)+C.

Proof If any of A, B or C is 0∗, the result is immediate using Exer-
cise 7.11.4. So now we suppose none is 0∗.

By the Equality Theorem 7.7.6 it is enough to show that for each termi-
nating decimal T , A + (B + C) > T if and only if (A + B) + C > T . We
show the implication one way only, the other direction being similar.

Well, let T be a terminating decimal, and suppose A + (B + C) > T .
By the Key Lemma 7.11.4, there are terminating decimals a and d such
that A > a, B + C > d and a + d > T . Now B + C > d, so by the Key
Lemma again there are terminating decimals b and c such that B > b,
C > c and b+ c > d. Now, A ≥ a, B ≥ b and C ≥ c, so by Exercise 7.11.2
A + B ≥ a + b and (A + B) + C ≥ (a + b) + c. But terminating decimal
addition is associative (Exercise 7.11.5). Thus (a+ b) + c = a+ (b+ c) but
also, b+ c ≥ d, so a+ (b+ c) ≥ a+ d > T so (A+B) + C > T . This ends
the proof.

We conclude this section with some results about our definition of addi-
tion. Let A and B be base n infinite decimals in standard form; as usual,
set

A = wA.a1a2a3a4 . . .
B = wB .b1b2b3b4 . . .

Now, A+B was defined to be the limit of the sequence

(wA + wB)∗

(wA.a1 + wB .b1)∗

(wA.a1a2 + wB .b1b2)∗

etc.
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In this sequence, each term is essentially a sum of an approximation to
A and an approximation to B, in each case, approximations to the same
number of places. Is there something important about having the approxi-
mations to both A andB of the same length, or it is incidental. For example,
would the following sequence also have A+B as a limit:

(wA + wB)∗

(wA.a1a2 + wB .b1)∗

(wA.a1a2a3a4 + wB .b1b2)∗

(wA.a1a2a3a4a5a6 + wB .b1b2b3)∗

etc.

In this the A approximations are twice as long as the B approximations.

Theorem 7.11.6 In base n, let A and B be infinite decimals. Let CA be
any collection of infinite decimals having A as least upper bound, and let
CB be any collection having B as least upper bound. Let C consist of all
sums of terms from CA with terms from CB. That is,

C = {x+ y | x ∈ CA and y ∈ CB}.

Then C has A+B as least upper bound.

Proof If A = 0∗, then C = CB (why?) so the least upper bound of C is
that of CB , namely B = 0∗ +B = A+B. Similarly if B = 0∗.

Now suppose neither A nor B is 0∗. We first show A + B is an upper
bound for C. Suppose z ∈ C. Then for some x ∈ CA and y ∈ CB , z = x+y.
Since x ∈ CA, and A is the least upper bound of CA, x ≤ A. Similarly
y ≤ B. Then z = x+ y ≤ A+B. Thus A+B is an upper bound for C.

Since C has an upper bound, it has a least upper bound, call it C. We
immediately have C ≤ A+B.

Suppose C < A + B. Then there is a terminating decimal T between
them, C < T < A+B. Since A+B > T , by the Key Lemma 7.11.4, there
are terminating decimals a and b such that A > a, B > b, and a + b > T .
Since A is the least upper bound of CA and A > a, a is not an upper bound
for CA. Then there must be an a′ in CA with a′ ≥ a. Similarly there must
be some b′ in CB with b′ ≥ b. Now, a′ + b′ is in C since a′ is in CA and
b′ is in CB . But, a′ + b′ ≥ a+ b > T > C and C is the least upper bound
of C. This is a contradiction. We can’t have C < A+B, so we must have
C = A+B.

This concludes the proof.

Now we can easily answer the question raised just before this theorem.

Corollary 7.11.7 In base n, let A1, A2, A3, A4, . . . be any bounded, non-
decreasing sequence of infinite decimals with A as a limit, and let B1, B2,
B3, B4, . . . be any bounded non-decreasing sequence with B as a limit. Then
the sequence A1 +B1, A2 +B2, A3 +B3, . . . has A+B as a limit.
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One important consequence of this corollary is the fact that in adding A
and B it doesn’t matter whether we use standard forms or non-standard
ones. We illustrate this with a base 10 example. Consider the problem A+B
where A = (3)∗ and B = (2)∗.

3.0000 . . .
+ 2.0000 . . .

5.0000 . . .

Suppose we replace these by their non-standard forms, and apply the defi-
nition of addition even though this is technically incorrect.

2.9999 . . .
+ 1.9999 . . .

To work this out we form the sequence of partial sums:

L1 = (2.+ 1.)∗

L2 = (2.9 + 1.9)∗

L3 = (2.99 + 1.99)∗

etc.

We claim this sequence has 5.0000 . . . as limit too.
Well, let A1 = (2)∗, A2 = (2.9)∗, A3 = (2.99)∗, etc. Then the limit of

this sequence is A = (3)∗. And let B1 = (1)∗, B2 = (1.9)∗, B3 = (1.99)∗,
etc. The limit of this sequence is B = (2)∗. By the corollary above, the
sequence A1 +B1, A2 +B2, A3 +B3, etc. has A+B = (3)∗+(2)∗ = (5)∗ as
limit. But, A1 +B1 = L1, A2 +B2 = L2 and so on. So the above sequence
of partial sums has (5)∗ as limit too.

Exercises

Exercise 7.11.1 Prove Theorem 7.11.1.

Exercise 7.11.2 Let A, B, C and D be base n infinite decimals. Suppose
A ≥ C and B ≥ D, and show A+B ≥ C +D.

Exercise 7.11.3 The techniques of the proof of Lemma 7.11.4 may be
used to show a result about non-standard forms. In base n, let A and
B be infinite decimals in standard form, and suppose A also has a non-
standard form, let wA.a1a2a3a4 . . . be it. If A > B, show that for some
k, (wA.a1a2 . . . ak)∗ > B. For example, in base 10, let A = 3.1420000 . . .
and B = 3.1419962 . . .. Then A > B. The non-standard form of A is
3.1419999 . . ., and, in fact, (3.141999)∗ > B.

Exercise 7.11.4 Prove: In base n, for any infinite decimal A, A+ 0∗ = A.
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Exercise 7.11.5 In base n, let a, b and c be finite decimals, and show
a∗ + (b∗ + c∗) = (a∗ + b∗) + c∗. Hence addition of terminating decimals is
associative.

Exercise 7.11.6 Give a proof for Corollary 7.11.7.

7.12 Multiplication of infinite decimals

Now that we have the pattern of addition to follow, we can treat multipli-
cation easily. Suppose we wanted to give meaning to the base 10 problem:

7.12368421 . . .
× 2.60827035 . . .

Well, let us multiply out, as finite decimals, the partial products.

7× 2 = 14.
7.1× 2.6 = 18.46
7.12× 2.60 = 18.5120
7.123× 2.608 = 18.576784
7.1236× 2.6082 = 18.57977352
etc. etc.

We would like to say the limit of this sequence is the product of our two
infinite decimals. But we can! The sequence must be non-decreasing since
we are multiplying together longer and longer finite decimals. And the
sequence is clearly bounded by 8× 3 = 24. So

14.000000000 . . .
18.460000000 . . .
18.512000000 . . .
18.576784000 . . .
18.579773520 . . .
etc.

is a non-decreasing, bounded sequence of infinite decimals which, by the
Limit Theorem 7.9.2 has a limit, apparently beginning 18.57 . . .. And we
can define the product to be this limit.

In general, let A and B be base n infinite decimals, say, in standard form,

A = wA.a1a2a3a4 . . .

B = wB .b1b2b3b4 . . .

Compute the finite decimal products

(wA) · (wB)
(wA.a1) · (wB .b1)
(wA.a1a2 · (wB .b1b2)
etc.
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This is a non-decreasing sequence of finite decimals. Also every term in
the sequence is less than (wA + 1) · (wB + 1). Now consider the associated
sequence of terminating decimals.

[(wA) · (wB)]∗

[(wA.a1) · (wB .b1)]∗

[(wA.a1a2) · (wB .b1b2)]∗

etc.

This is a bounded, non-decreasing sequence of infinite decimals. Let L be
the limit. We define A ·B = L.

Exercises

Exercise 7.12.1 In base 10, show (10)∗ ·(.3333 . . .) = 3.333 . . .. Generalize
this result.

Exercise 7.12.2 In base 10, show (3)∗ · (.3333 . . .) = 1∗.

Exercise 7.12.3 In base n, show:

1. 0∗ ·A = 0∗;

2. 1∗ ·A = A.

Exercise 7.12.4 In base 10, show 2∗ ·A = A+A.

We have said that finite and terminating decimals behave alike. This
extends to multipation too.

Exercise 7.12.5 In base 10, as finite decimals, .14 × .28 = .0392. Show
that as infinite decimals .140000 . . .× .280000 . . . = .03920000 . . ..

Exercise 7.12.6 Show that in base n, if d1 and d2 are finite decimals,
(d1)∗ · (d2)∗ = (d1 · d2)∗.

Then, any principle of finite decimals involving only order, addition and
multiplication can be transferred to a principle of terminating decimals.
The following exercise illustrates this.

Exercise 7.12.7 Show the distributive law is true for base n terminating
decimals. That is, let a, b and c be base n finite decimals and show a∗ ·
(b∗ + c∗) = a∗ · b∗ + a∗ · c∗.
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7.13 Basic properties of multiplication

In this section we establish that multiplication of infinite decimals is com-
mutative, associative, is related to addition by a distributive law, and we
see how multiplication and the ordering relation are connected. Most of the
proofs are quite similar to the corresponding proofs for addition and are
left as exercises.

Theorem 7.13.1 (Commutativity of multiplication)
In base n, let A and B be infinite decimals. A ·B = B ·A.

Theorem 7.13.2 In base n, let A, B and C be infinite decimals. If A ≥ B
then A · C ≥ B · C.

Next we need some preliminary results to lead up to a proof of associa-
tivity of multiplication.

Lemma 7.13.3 In base n, suppose U , V and T are finite decimals. Sup-
pose also that U · V > T . Then there are finite decimals a and b such that
U > a, V > b and a · b > T .

Proof Since U , V and T are finite decimals, we have all the basic properties
of rational numbers at our disposal. U ·V > T ≥ 0, so neither U nor V can
be 0, hence we can divide by them. Now U · V > T so U > T

V . Let a be a
finite decimal between U and T

V (Exercise 6.4.2). Then U > a, and a > T
V ,

so a ·V > T . Further, since a ·V > T , V > T
a (why can’t a be 0?). Let b be

a finite decimal between V and T
a . Then V > b, and b > T

a , so a · b > T .

Lemma 7.13.4 (Key Lemma) In base n, let A and B be infinite deci-
mals and T be a terminating decimal. Suppose A · B > T . Then there are
terminating decimals a and b such that A > a, B > b, and a · b > T .

Proof We may suppose A and B are in standard form. Let

A = wA.a1a2a3a4 . . .

B = wB .b1b2b3b4 . . .

Now A ·B is the limit of the sequence

L0 = [wA · wB ]∗

L1 = [(wA.a1) · (wB .b1)]∗

L2 = [(wA.a1a2) · (wB .b1b2)]∗

etc.

and also, A ·B is the least upper bound of this sequence. A ·B > T , so for
some j, Lj > T . That is,

[(wA.a1a2 . . . aj) · (wB .b1b2 . . . bj)]∗ > T.
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By Exercise 7.12.6 this says

(wA.a1a2 . . . aj)∗ · (wB .b1b2 . . . bj)∗ > T.

Let U = (wA.a1a2 . . . aj)∗ and V = (wB .b1b2 . . . bj)∗. Then U and V are
terminating decimals. U · V > T , and clearly A ≥ U and B ≥ V .

Now, by the lemma above, transferred to terminating decimals, there are
terminating decimals a and b such that U > a, V > b and a · b > T . Since
A ≥ U > a we have A > a. Similarly B > b. This concludes the proof.

Theorem 7.13.5 (Associativity of Multiplication)
In base n, let A, B and C be infinite decimals; A · (B · C) = (A ·B) · C.

Theorem 7.13.6 (Distributivity) In base n let A, B and C be infinite
decimals; A · (B + C) = A ·B +A · C.

Proof If any of A, B or C is 0∗ the result is immediate. Now suppose none
is 0∗.

We can show this result by showing, for each terminating decimal T ,
A ·(B+C) > T if and only if A ·B+A ·C > T . Well, let T be a terminating
decimal, and suppose first that A · B + A · C > T . By the Key Lemma of
Section 11 there are terminating decimals d and e such that A · B > d,
A ·C > e and d+ e > T . Further, A ·B > d, so by the Key Lemma in this
section there are terminating decimals a1 and b such that A > a1, B > b
and a1 · b > d. Similarly, since A ·C > e, there are terminating decimals a2

and c such that A > a2, C > c and a2 · c > e. Let a be the larger of a1 and
a2. Then A > a, a ≥ a1, a ≥ a2.

Now, A ≥ a, B ≥ b and C ≥ c, so B + C ≥ b + c and A · (B +
C) ≥ a · (b + c). But the distributive law holds for terminating decimals
so a · (b + c) = a · b + a · c. But also, a ≥ a1 and a ≥ a2, so a · b ≥ a1 · b
and a · c ≥ a2 · c so a · b + a · c ≥ a1 · b + a2 · c ≥ d + e > T . Thus
A · (B + C) ≥ a · (b+ c) = a · b+ a · c > T .

Theorem 7.13.7 In base n, let A and B be infinite decimals. Let CA be
any collection of infinite decimals having A as least upper bound, and let
CB be any collection having B as least upper bound. Let C consist of all
products of terms from CA with terms from CB. That is, C = {x · y | x ∈
CA and y ∈ CB}. Then C has A ·B as least upper bound.

Corollary 7.13.8 In base n, let A1, A2, A3, A4, . . . be any bounded, non-
decreasing sequence having A as limit, and let B1, B2, B3, B4, . . . similarly
have B as limit. Then the sequence A1 ·B1, A2 ·B2, A3 ·B3, . . . has A ·B
as limit.

When we multiply infinite decimals the definition requires that they be
in standard form, but in fact this is not necessary, though it did serve to
simplify some proofs. The demonstration of this is left to you in a series of
exercises.
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Exercises

Exercise 7.13.1 Prove Theorem 7.13.1.

Exercise 7.13.2 Use the corresponding theorem in Section 11 as a guide
and give a proof of Theorem 7.13.2.

Exercise 7.13.3 Let A, B, C and D be base n infinite decimals. Suppose
A ≥ C and B ≥ D, show A ·B ≥ C ·D.

Exercise 7.13.4 Use the proof of the associativity of addition in Sec-
tion 11 as a guide and give a proof of Theorem 7.13.5.

Exercise 7.13.5 Complete the proof of Theorem 7.13.6 by showing: if
A · (B+C) > T where T is a terminating decimal, then A ·B+A ·C > T .

Exercise 7.13.6 Prove Theorem 7.13.7.

Exercise 7.13.7 Prove Corollary 7.13.8.

Exercise 7.13.8 Carry out the following base 2 multiplication twice, once
using standard forms, once using non-standard forms:

1.110000 . . .× 11.100000 . . . .

Exercise 7.13.9 Prove that restrictions to standard forms in the defini-
tion of multiplication is not necessary (see the corresponding discussion of
addition at the end of Section 11.

7.14 Subtraction, an introduction

It is easy to say how subtraction should behave. If A ≥ B, A−B should be
that quantity C such that B+C = A. The difficulty in simply making this
the definition of subtraction is that it is not easy to establish that whenever
A ≥ B, there really is exactly one C such that B + C = A.

One way out of this difficulty is to define subtraction by totally different
means, using intuition and analogy as guides, then develop its properties to
the point where we can show it meets the condition given at the beginning
of this section. Now there are several different, but equivalent ways this can
be done. Some are more convenient than others for the purposes of a simple
development of the theory. As it turns out, the way that is most analogous
to the way we defined addition and multiplication leads to unexpected
difficulties; suppose, for example, we had the base 10 problem.

1.729365 . . .
− 1.682737 . . .
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and suppose we try subtracting better and better finite decimal approxi-
mations and see if the results ‘go anywhere.’ Well, as finite decimals,

1.− 1. = 0.
1.7− 1.6 = 0.1

1.72− 1.68 = 0.04
1.729− 1.682 = 0.047

1.7293− 1.6827 = 0.0466
1.72936− 1.68273 = 0.04663

1.729365− 1.682737 = 0.046628
etc. etc.

Notice that is sequence isn’t non-decreasing (nor, for that matter is it non-
increasing!). Rather it oscillates. The second term is bigger than the first,
the third term smaller than the second, then the fourth is bigger and so on.
We can not assign a limit to this sequence by any means we have established
so far. Our approach to subtraction must be along different lines.

7.15 Subtraction with terminating decimals

As we have seen, subtraction with infinite decimals is something of a prob-
lem, but oddly enough if at least one of the decimals involved is terminating
the situation becomes intuitively simple. Let us first consider a subtraction
problem with a terminating decimal ‘on the bottom.’ Consider, in base 10,
the problem:

2.7163092816 . . .
− .6319000000 . . .

It is intuitively plausible to say: subtract as finite decimals:

2.7163
− .6319

2.0844

and ‘tack on’ the rest of the upper decimal, namely 092816 . . ., to get
2.0844092816 . . .. Thus we might write:

2.7163092816 . . .
− .6319000000 . . .

2.0844092816 . . .

One is justified in this by showing the answer ‘adds back’,

2.0844092816 . . .
+ .6319000000 . . .

2.7163092816 . . .
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In general, in base n, let A be an infinite decimal and T be a terminating
decimal, (A > T ). We define A−T as follows. Suppose the standard forms
of A and T are:

A = wA.a1a2a3 . . . anan+1 . . .

T = wT .t1t2t3 . . . tn0000 . . .

Compute as a finite decimal problem

wA.a1a2a3 . . . an
− wT .t1t2t3 . . . tn

wC .c1c2c3 . . . cn

Then we define A− T to be the infinite decimal

C = wC .c1c2c3 . . . cnan+1an+2 . . . .

Note that, differently phrased, Exercise 7.15.2 shows (A− T ) + T = A.

Now let us consider the problem of subtracting an infinite decimal from
a terminating decimal. For example, consider the base 10 problem:

3.240000 . . .
− 1.826391 . . .

Let us begin by replacing the terminating decimal on top by its nonstandard
form, in effect doing all our borrowing at once.

3.239999 . . .
− 1.826391 . . .

Again we can compute, as finite decimals,

3.23
− 1.82

Now notice, in our original problem, after the second decimal place borrow-
ing is never necessary. So we can compute column by column independently,
and put down:

3.239999 . . .
− 1.826391 . . .

1.413608 . . .

Again, the procedure is justified if we show it ‘adds back.’ This is left to
you as an Exercise.

In general, in base n, let A be an infinite decimal and T be a terminating
decimal (T > A). We define T −A as follows. Let:
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T = wT .t1t2 . . . tk−1tk0000 . . .

A = wA.a1a2 . . . ak−1akak+1 . . .

(here we suppose tk is the last non-zero decimal place of T .) Then T in
non-standard form is:

T = wT .t1t2 . . . tk−1t
′
kdddd . . .

where d is the highest base n digit and t′k is the digit just smaller than tk.
Now, compute as a finite decimal problem:

wT .t1t2 . . . tk−1t
′
k

− wA.a1a2 . . . ak−1ak
wC .c1c2 . . . ck−1ck

Also let:
ck+1 = d− ak+1

ck+2 = d− ak+2

ck+3 = d− ak+3

etc.

and set
C = wC .c1c2 . . . ck−1ckck+1ck+2 . . .

We define T −A to be C.
Differently phrased, Exercise 7.15.4 shows (T −A) +A = T .

We have now defined A − B (A > B) in the case that one of A or B
is a terminating decimal. In fact, if both are terminating decimals, A− B
is covered by both discussions above, so it is necessary to show that each
method gives the same answer in this case. Exercise 7.15.5 illustrates this.

A general proof that our two methods of subtraction agree when both
decimals involved are terminating is quite easy. First, we know that in the
system of rational numbers (hence in finite decimals) if a + c = b and
a + c′ = b then c = c′ (cancellation law for addition of rationals). Then a
similar result holds for terminating decimals. Now suppose T1 and T2 are
terminating decimals with T1 > T2. Clearly either method of subtracting
T1 − T2 will give a terminating decimal for a result. Say the first method
discussed in this section gives us T1 − T2 = C, and say the second method
produces T1 − T2 = C ′. By Exercise 7.15.2, C + T2 = T1, and by Exer-
cise 7.15.4, C ′ + T2 = T1. But then, since we have the cancellation law for
terminating decimals, we get C = C ′.
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Exercises

Exercise 7.15.1 Use the definition of addition we gave for infinite deci-
mals, and verify the correctness of the addition:
2.0844092816 . . . + .6319000000 = 2.7163092816 . . ..

Exercise 7.15.2 Let A = wA.a1a2a3 . . . anan+1 . . .,
T = wT .t1t2t3 . . . tn0000 . . . and C = wC .c1c2c3 . . . cnan+1an+2 . . . be as
above, so that A− T = C by our definition. Prove that C + T = A.

Exercise 7.15.3 Show that 1.413608 . . . + 1.826391 . . . = 3.239999 . . . =
3.240000 . . ..

Exercise 7.15.4 Let A = wA.a1a2 . . . ak−1akak+1 . . .,
T = wT .t1t2 . . . tk−1tk0000 . . . and C = wC .c1c2 . . . ck−1ckck+1ck+2 . . ., so
that T −A = C by our definition. Prove that C +A = T .

Exercise 7.15.5 In base 10, carry out the following subtraction twice,
using both methods discussed in this section:18.360000 . . .− 4.823000 . . ..

7.16 Subtraction in general

Suppose A and B are base n infinite decimals with A ≥ B. We want to say
what A−B is to mean even if neither A nor B is terminating. Our definition
is this. First, if A = B, we define A−B to be 0. Next, if A > B, there is a
terminating decimal T between them (Theorem 7.7.5): A > T > B. In the
previous section, both A − T and T − B were defined. We take A − B to
be (A− T ) + (T −B).

For example, using this definition let us compute in base 10:

4.2183692 . . . = A
− 4.1892136 . . . = B

In Section 7 our proof that there was a terminating decimal between A and
B actually showed how to produce one. Following the method of that proof,
we get T = 4.190000 . . . Now, we compute A− T as defined in Section 15:

4.2183692 . . .
− 4.1900000 . . .

0.0283692 . . .

and we compute T −B:

4.1899999 . . .
− 4.1892136 . . .

0.0007863 . . .
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Then by our definition, A−B = (A− T ) + (T −B) or

0.0283692 . . .
+ 0.0007863 . . .

0.0291555 . . .

If A > B, we have defined A − B to be (A − T ) + (T − B) where T
is a terminating decimal between A and B. But we are not really free to
use this definition until we clear up some difficulties. Would a different
choice of terminating decimal between A and B give us a different result?
Is it really the case that A − B behaves like subtraction should, so that
(A−B) +B = A? Is it the case that any other way of defining subtraction
which makes (A− B) + B = A would give the same result our way gives?
We proceed to answer these questions, but until we do, we will not use the
notation A−B except in the special cases which were covered in Section 15.

Recall that in Section 15, subtraction was properly defined provided one
of the decimals involved was terminating. Indeed, if A > T > B where T
is terminating, the subtraction operations of Section 15 satisfy:

(A− T ) + T = A

(T −B) +B = T

Lemma 7.16.1 In base n, let A be an infinite decimal and T be a termi-
nating decimal. If A > T then A− T > 0∗.

Proof If A is a terminating decimal too, the result is immediate, since it
is true for finite decimals.

If A is not a terminating decimal, say its standard form is

wA.a1a2 . . . anan+1 . . .

and T is
wT .t1t2 . . . tn0000 . . . .

Now, as defined in Section 15, to compute A − T we carry out the finite
decimal problem:

wA.a1a2 . . . an
− wT .t1t2 . . . tn

wC .c1c2 . . . cn

Then A− T is defined to be

wC .c1c2 . . . cnan+1an+2 . . .

But not all of an+1, an+2, . . . can be 0’s since A is not terminating. Hence
A− T > 0∗.

Lemma 7.16.2 In base n, if X > 0∗ then Y +X > Y .
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Theorem 7.16.3 (Cancellation law for addition)
In base n, if C +A = C +B then A = B.

Proof Suppose C + A = C + B. If we didn’t have A = B we would
have A > B or B > A, say the first for the sake of argument. Let T
be a terminating decimal between A and B, thus A > T > B. Then in
Section 15, A − T and T − B have been defined. Now C + B = C + A
so C + B + (T − B) = C + A + (T − B). But B + (T − B) = T , so we
have C + T = C + A + (T − B) ≥ C + A + 0∗ = C + A. From this using
Theorem 7.11.2, C+T+(A−T ) ≥ C+A+(A−T ). But T+(A−T ) = A, so
we have C+A ≥ C+A+(A−T ). But now, by Lemma 7.16.1, A−T > 0∗,
so by Lemma 7.16.2, (C+A)+(A−T ) > (C+A). Thus C+A > C+A and
this is not possible. A similar contradiction arises if B > A so the proof is
complete.

The cancellation law is an important result. One consequence is that
subtraction, if it can be done at all, can only give one answer. That is,

Corollary 7.16.4 In base n, if there is some C such that B + C = A,
there is only one.

Next we establish when subtraction can be done, and show the way we
defined it is proper.

Theorem 7.16.5 In base n, let A > B. Let T be some terminating decimal
between A and B, and let C = (A− T ) + (T −B). Then:

1. B + C = A

2. If T ′ is any other terminating decimal between A and B, (A− T ′) +
(T ′ −B) = C.

Proof For 1)

B + C = B + [(A− T ) + (T −B)]
= B + [(T −B) + (A− T )]
= [B + (T −B)] + (A− T )
= T + (A− T )
= A.

And for 2), we merely observe that our proof of part 1) will work for any
terminating decimal between A and B, and so

B + [(A− T ′) + (T ′ −B)] = A.

But B + C = A, so

B + C = B + [(A− T ′) + (T ′ −B)]
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and by the cancellation law,

C = (A− T ′) + (T ′ −B).

Thus our definition of subtraction is a good one. If A ≥ B, A−B is the
one and only thing we can add to B and get A. That is,

1. B + (A−B) = A

2. if B +X = A then X = A−B.

We conclude this section with a proof that finite and terminating deci-
mals behave alike with respect to subtraction as well.

Theorem 7.16.6 Let d1 and d2 be base n finite decimals with d1 ≥ d2.
Then (d1 − d2)∗ = d∗1 − d∗2.

Proof We have seen that d∗1−d∗2 is the only thing we can add to d∗2 to get
d∗1. But suppose we try adding (d1 − d2)∗ to d∗2 and see what happens.

d∗2 + (d1 − d2)∗ = [d2 + (d1 − d2)]∗

since finite and terminating decimals behave alike with respect to addition.
But, as finite decimals, d2 + (d1 − d2) = d1 so [d2 + (d1 − d2)]∗ = d∗1. Thus
d∗2 + (d1 − d2)∗ = d∗1 so (d1 − d2)∗ = d∗1 − d∗2.

We now have several ways available for subtracting terminating decimals.
There are the techniques of Section 15, and the general method of this
section. In fact, they all give the same results. We leave it to you to verify
this.

Exercises

Exercise 7.16.1 In base 2, compute the following:

11.0110110010110 . . .
− 1.0001101001101 . . .

Exercise 7.16.2 Prove that if A and B are base n infinite decimals with
A > B, there are infinitely many terminating decimals between them.

Exercise 7.16.3 Prove Lemma 7.16.2.

Exercise 7.16.4 Prove Corollary 7.16.4.

Exercise 7.16.5 If A = B, we defined A−B to be 0∗. Show 0∗ is the only
thing satisfying B + C = A.
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Exercise 7.16.6 In base 10 calculate:

4.30000 . . .
− 3.10000 . . .

Use the method of this section; that is, find a terminating decimal between
them, etc. Also subtract by one other method.

Exercise 7.16.7 Prove that all the definitions of subtraction, applied to
terminating decimals, give the same results.

7.17 More results on the ordering of infinite
decimals

We give another characterization of the ordering relation for infinite deci-
mals, and we sharpen some earlier results.

Theorem 7.17.1 In base n,

1. A ≥ B if and only if A = B + C for some C,

2. A > B if and only if A = B + C for some C 6= 0∗.

Proof Suppose first that A ≥ B. Then A−B is defined. Let C = A−B.
Then B + C = A.

Suppose next that A = B+C for some C. Well, C ≥ 0∗, so A = B+C ≥
B + 0∗ = B so A ≥ B. Thus part 1) is established.

Now suppose A > B. Again, A − B is defined. Let T be a terminating
decimal between A and B, A > T > B. Then A−B = (A−T )+(T −B) by
definition. By Lemma 7.16.1, A−T > 0∗, so A−B = (A−T ) + (T −B) ≥
(A − T ) + 0∗ = A − T > 0∗, that is, A − B > 0∗. Now take C = A − B.
Then B + C = A and C 6= 0∗. This is half of part 2).

Finally suppose A = B + C for some C 6= 0∗. By Lemma 7.16.2, since
C > 0∗, B + C > B. Thus A > B. This completes the proof.

We showed in Section 11 that if A ≥ B then A + C ≥ B + C. Now we
are in a position to show that ≥ can be replaced by >, which is a sharper
result. Also, the converse holds, which is quite useful.

Theorem 7.17.2 In base n, A > B if and only if A+ C > B + C.

Proof Suppose A > B. Then certainly A ≥ B, so A + C ≥ B + C. If we
did not have A + C > B + C, we would have A + C = B + C and by the
Cancellation Law of Section 4 we would have A = B, a contradiction. Thus
A+ C > B + C.

Next suppose A+C > B+C. If we did not have A > B, we would have
B ≥ A. But then, B + C ≥ A + C, contradicting that A + C > B + C.
Thus A > B.
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Now we can get a similar result to Theorem 7.17.2 for multiplication.

Theorem 7.17.3 In base n, let A, B and K be infinite decimals with
K 6= 0∗. Then:

1. A = B if and only if K ·A = K ·B,

2. A > B if and only if K ·A > K ·B.

Proof We show part 2). Suppose first that A > B. By Theorem 7.17.1,
A = B+C where C 6= 0∗. Then K ·A = K · (B+C) = K ·B+K ·C. Now
by Exercise 7.17.2, K ·C 6= 0∗, so by Theorem 7.17.1 again, K ·A > K ·B.

Conversely, if K ·A > K ·B we must have A > B, for otherwise A = B
or B > A. If A = B then K ·A = K ·B, a contradiction. If B > A, by what
we just showed, K ·B > K ·A, again a contradiction. Thus A > B.

We have shown that the same thing can be added to both sides of an
inequality. In fact, the same thing can be subtracted from both sides as
well.

Theorem 7.17.4 In base n, if A ≥ C and B ≥ C, then A > B if and
only if A− C > B − C.

Proof Suppose A > B. If we didn’t have A− C > B − C, then we would
have B − C ≥ A− C. But then (B − C) + C ≥ (A− C) + C, or B ≥ A, a
contradiction. Thus A−C > B−C. This is half of the theorem. The other
half is left as an exercise.

On the other hand we have:

Theorem 7.17.5 In base n, if C ≥ A and C ≥ B then, A > B if and
only if C −A < C −B.

Proof Suppose A > B. If we didn’t have C − A < C − B we would have
C−A ≥ C−B. But then, (C−A) +A ≥ (C−B) +A > (C−B) +B. But
(C−A) +A = C and (C−B) +B = C so we have C > C, a contradiction.

Exercises

Exercise 7.17.1 Prove, in base n, A ≥ B if and only if A+ C ≥ B + C.

Exercise 7.17.2 In base n, prove that if A 6= 0∗ and B 6= 0∗ then A ·B 6=
0∗.

Exercise 7.17.3 Prove part 1) of Theorem 7.17.3.

Exercise 7.17.4 Prove or disprove: the restriction, K 6= 0∗ in Theo-
rem 7.17.3 can be dropped.
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Exercise 7.17.5 Prove, in base n, if A > B and C > D then A·C > B ·D.

Exercise 7.17.6 Prove, in base n, that each of the following implies the
next.

A > 1
A ·A > 1
A ·A ·A > 1
A ·A ·A ·A > 1
etc.

Exercise 7.17.7 Prove, in base n, that each of the following implies the
next.

A < 1
A ·A < 1
A ·A ·A < 1
A ·A ·A ·A < 1
etc.

Exercise 7.17.8 Prove, in base n, that all of the following are equivalent.

A > 1
A ·A > 1
A ·A ·A > 1
A ·A ·A ·A > 1
etc.

Exercise 7.17.9 Complete the proof of Theorem 7.17.4 by showing, if
A− C > B − C then A > B.

Exercise 7.17.10 Complete the proof of Theorem 7.17.5 by showing: if
C −A < C −B then A > B.

Exercise 7.17.11 In base n, suppose A ≥ C and B ≥ D and show: if
A > B and C < D then A− C > B −D.

7.18 Basic properties of subtraction

The properties stated for subtraction here can be proved by the same meth-
ods that worked for the whole number system, see Chapter Three Section 7.
Consequently they are left as exercises.

By definition, A − B = (A − T ) + (T − B) where T is a terminating
decimal between A and B. In fact, the restriction to terminating can be
removed.

Theorem 7.18.1 In base n, if A ≥ C ≥ B then A−B = (A−C)+(C−B).

Theorem 7.18.2 (Distributive law for subtraction)
In base n, if B ≥ C, then A · (B − C) = A ·B −A · C.
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Exercises

Exercise 7.18.1 Prove Theorem 7.18.1.

Exercise 7.18.2 Prove Theorem 7.18.2.

Exercise 7.18.3 In base n, if B ≥ C then (A+B)− C = A+ (B − C).

Exercise 7.18.4 In base n, if A ≥ B+C then A−(B+C) = (A−B)−C =
(A− C)−B.

Exercise 7.18.5 In base n, if A ≥ B then A−B = (A+ C)− (B + C).

Exercise 7.18.6 In base n, if A ≥ B ≥ C then A−(B−C) = (A−B)+C =
(A+ C)−B.

Exercise 7.18.7 In base n, if A ≥ B and C ≥ D then (A−B) · (C−D) =
(A · C +B ·D)− (A ·D +B · C).

Hint: It will be easiest to establish this using the properties of subtraction
above, rather than working directly.

7.19 Division

We show that division, except by 0∗, always makes sense. That is, if A and
B are base n infinite decimals with B 6= 0∗, then

1. there is an infinite decimal C such that B · C = A,

2. there is only one.

Then we can define A÷B to be that infinite decimal C such that B ·C = A.
To show 1) we use the Least Upper Bound Theorem 7.9.7. To show 2) we
use the cancellation law for multiplication, Theorem 7.17.3. We begin with
the easy part, item 2.

Theorem 7.19.1 In base n, let A and B be infinite decimals with B 6= 0∗.
If there is an infinite decimal C such that B · C = A, there is only one.

Proof Suppose B · C = A and also B · C ′ = A. Then B · C = B · C ′ and
by the cancellation law for multiplication, C = C ′.

For item 1 we first need a simple lemma whose proof says, multiplying
by (10)∗ often enough makes a product as big as we like, and multiplying
by (0.1)∗ often enough can make it as small as we like.

Lemma 7.19.2 In base n, let B and D be infinite decimals, neither 0∗.

1. There is an infinite decimal K, not 0∗, such that D > B ·K.

2. There is an infinite decimal K, such that B ·K > D.
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Proof We show part 1 only. To simplify the language we suppose both B
and D have 0 whole number parts. It will be clear how to modify things if
that is not the case. So, say B and D in standard form look like

B = 0.b1b2b3b4 . . .

D = 0.d1d2d3d4 . . .

Now D 6= 0∗ so some decimal place of D is not 0, say the first non-zero
place of D is the kth. Then D looks like:

D = 0.00 . . . 0dkdk+1 . . .

where dk 6= 0. It is easy to show that multiplying an infinite decimal by
(0.1)∗ moves the decimal point to the left one place. So, take K to be
(.1)∗ · (.1)∗ · . . . · (.1)∗ (where we have written k terms in the product). Then
multiplying by K moves the decimal point k places to the left. So b1, being
the first decimal place of B, becomes the k + 1st of B ·K. That is,

B ·K = 0.00 . . . 0b1b2b3b4 . . .

where there are k 0’s after the decimal point. Now, since B ·K has 0 in its
kth decimal place while D has dk 6= 0, D > B ·K.

Theorem 7.19.3 In base n, let A and B be infinite decimals with B 6= 0∗.
There is an infinite decimal C such that B · C = A.

Proof We form a collection C of base n infinite decimals as follows: put
X in C just when A ≥ B ·X. That is, C = {X | A ≥ B ·X}.

First, since A ≥ B · 0∗ = 0∗, C has something in it, namely 0∗.
Next, by part 2) of the lemma above, there is an infinite decimal K such

that B ·K > A. We claim K is an upper bound for C. That is, if X belongs
to C, then X < K. For, if X is in C, then B ·X ≤ A, but A < B ·K, so
we have B ·X < B ·K, and by Theorem 7.17.3, X < K.

Thus C is a non-empty collection of infinite decimals which has an upper
bound. Then C has a least upper bound, call it C. We claim C is what we
wanted, that is, B · C = A. We show this by showing both of A > B · C
and B · C > A lead to contradictions.

Suppose we had A > B · C. We show C can be increased a little to C ′

and still have A > B · C ′, which means C is not an upper bound for C.
Well, if A > B · C, then A − B · C is defined and is not 0∗. Call it D.

By part 1) of the lemma above, there is an infinite decimal K, not 0∗, such
that D > B ·K. Let C ′ = C +K. Then:

A = B · C + (A−B · C)
= B · C +D
> B · C +B ·K
= B · (C +K)
= B · C ′
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so A > B · C ′ which means C ′ is in C. But C ′ > C and C was an upper
bound, a contradiction.

Suppose we had B ·C > A. We show C can be decreased a little to c and
still have B · c > A, which means C is not the least upper bound. This can
be done in a manner similar to the case just considered, but here we have
an earlier result at our disposal which we use for variety. Well, suppose
B ·C > A. There is a terminating decimal T between then, B ·C > T > A.
By Lemma 7.13.4, there are terminating decimals b and c with B > b,
C > c and b · c > T . Then since B > b, B · c > b · c > T > A so B · c > A,
and hence c is an upper bound for C (why?) but c < C which is the least
upper bound, again a contradiction.

This concludes the proof.

Definition 7.19.4 In base n, let A andB be infinite decimals withB 6= 0∗.
By A÷B we mean that infinite decimal C such that B · C = A.

Notice that, by definition, B · (A ÷ B) = A, and B · X = A implies
X = A÷B.

Exercises

Exercise 7.19.1 Prove part 2) of Lemma 7.19.2 by a similar argument,
involving multiplying by (10)∗ instead of by (0.1)∗.

Exercise 7.19.2 According to our definition, A÷B makes sense if B 6= 0∗.
Show this restriction is necessary. Consider two cases, A = 0∗ and A 6= 0∗.

Exercise 7.19.3 Prove, in base 10, (6.0000 . . .)÷(3.0000 . . .) = 2.0000 . . ..

Exercise 7.19.4 Prove, in base 10, (1.0000 . . .)÷(3.0000 . . .) = 0.3333 . . ..

Exercise 7.19.5 Prove, in base 2,

(1.0000 . . .)÷ (11.0000 . . .) = 0.010101 . . .

.

7.20 Basic properties of division

Most of what we need to know about division follows quickly from what
we already know about multiplication. We begin by presenting a notation
for division that has become the conventional one. Its similarity to fraction
notation in the rational number system should arouse suspicions which, in
fact, will be justified shortly.

Definition 7.20.1 If A and B are base n infinite decimals with B 6= 0∗

we write A
B for A÷B.
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Note that, by definition of division, B · AB = A, and B ·X = A implies
X = A

B .
We now officially adopt the convention that whenever we write A

B we
assume B 6= 0∗. This cuts down on the wording of theorems and proofs.

Theorem 7.20.2 In base n, A
B = A · (1)∗

B .

Proof We know B · AB = A. But also

B ·
[
A · (1)∗

B

]
= A ·

[
B · (1)∗

B

]
= A · (1)∗

= A.

Hence
B ·
[
A · (1)∗

B

]
= B · AB

so by the cancellation law for multiplication,

A

B
= A · (1)∗

B
.

This suggests one more piece of notation.

Definition 7.20.3 We write B−1 for (1)∗

B . B−1 is read ‘B inverse’.

Note that the theorem above, using this notation, reads A
B = A · B−1.

This means a division can be replaced by a multiplication.

Theorem 7.20.4 (cross multiplication) In base n, A
B = C

D if and only
if A ·D = B · C.

Proof Suppose first that A
B = C

D , that is, A ·B−1 = C ·D−1. Then:

A ·B−1 ·B = C ·D−1 ·B
A · 1∗ = C ·D−1 ·B

A = B · C ·D−1

also
A ·D = B · C ·D−1

A ·D = B · C · 1∗
A ·D = B · C.

This is half the proof, the other half is similar, starting with A ·D = B ·C
and multiplying by B−1 and D−1.

The proof of this theorem is typical. We use inverse notation to replace
divisions by multiplications, then things are easy. We work out one more
theorem in detail and leave the rest as exercises.
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Theorem 7.20.5 In base n, A
C + B

C = A+B
C .

Proof The theorem, rewritten, states A · C−1 +B · C−1 = (A+B) · C−1

and this is true by the distributive law.

Exercises

Exercise 7.20.1 Show B ·B−1 = 1∗.

Exercise 7.20.2 Show A
B = A·C

B·C .

Exercise 7.20.3 Show A
B + C

D = A·D+B·C
B·D .

Exercise 7.20.4 Show (B−1)−1 = B.

Exercise 7.20.5 Show A
C > B

C if and only if A > B.

Exercise 7.20.6 Show A
B > C

D if and only if A ·D > B · C.

Exercise 7.20.7 Show if A > B then A > A+B
2∗ > B.

Exercise 7.20.8 Show, if A > C, then A
C − B

C = A−B
C .

Exercise 7.20.9 Show, if A
B ≥ C

D then A
B − C

D = A·D−B·C
B·D .

Exercise 7.20.10 Show A
B · CD = A·C

B·D .

Exercise 7.20.11 Show A
B = 0∗ if and only if A = 0∗.

Exercise 7.20.12 Show, if A
B 6= 0∗, then A

B · BA = 1∗.

Exercise 7.20.13 Show, if A
B 6= 0∗, then [AB ]−1 = B

A .

Exercise 7.20.14 Show, if C
D 6= 0∗, then A

B ÷ C
D = A

B · DC .

7.21 Rational numbers and infinite decimals

The rational number system is an enormously useful one, and infinite dec-
imals would be less than satisfactory if, in creating them, we lost the ra-
tionals. But in fact the system of base n infinite decimals contains a very
natural copy of the entire system of rational numbers, including those that
are not base n finite decimals. This is easy to show now that division has
been discussed.

First we need that the system of base n infinite decimals contains a copy
of the whole number system. This is immediate since whole numbers are
available as base n finite decimals. Recall that if t is a finite decimal, t∗

is the terminating (infinite) decimal associated with it. Now we claim that
if a and b are whole numbers, the infinite decimals a∗ and b∗ behave like
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a and b. For instance, in base 10, 2∗ + 3∗ = 5∗. More generally, we have
already seen that, in any base,

(a∗) + (b∗) = (a+ b)∗

(a∗) · (b∗) = (a · b)∗

(a∗) > (b∗) if and only if a > b

if a ≥ b then (a∗)− (b∗) = (a− b)∗.
These items are sufficient to verify our claim.

Now we want to find base n infinite decimal counterparts for all the
rational numbers. Well, choose a rational number and let a

b be a base n
fraction naming it. We claim the base n infinite decimal a∗

b∗ will ‘behave
like’ the rational number a

b .
For example, in base 10, the infinite decimal 1∗

3∗ should behave like the
rational number 1

3 . We know from Exercise 7.19.4 that 1∗

3∗ = .3333 . . ., so
it is this infinite decimal we are asserting will act like 1

3 .
There is a difficulty here though. Rational numbers have many fraction

names; could a different choice of fraction produce a different infinite dec-
imal? For instance, in base 10, 1

3 = 2
6 . We know 1∗

3∗ = .3333 . . ., is it the
case that 2∗

6∗ = .3333 . . .? The following theorem shows there is never an
ambiguity here.

Theorem 7.21.1 In base n, let a
b and c

d be fractions. a
b and c

d name the
same rational number if and only if a

∗

b∗ and c∗

d∗ are the same infinite decimal.

Proof a
b and c

d name the same rational number if and only if a · d = b · c.
But this is equivalent to (a · d)∗ = (b · c)∗ which in turn is equivalent to
(a∗) · (d∗) = (b∗) · (c∗). Finally by Theorem 7.20.4 this is equivalent to
a∗

b∗ = c∗

d∗ .

So our association of infinite decimals with rational numbers makes sense.
Next we need to show the infinite decimala

∗

b∗ and the rational number a
b

behave alike. For example, as base 10 fractions,

1
3

+
1
3

+
1
3

=
1
1

so in the system of base 10 infinite decimals, we should have

1∗

3∗
+

1∗

3∗
+

1∗

3∗
=

1∗

1∗

We know 1∗

3∗ = .3333 . . ., and 1∗

1∗ = 1∗, so the claim is (.3333 . . .) +
(.3333 . . .) + (.3333 . . .) = 1∗ which is easy to verify. More generally,

Theorem 7.21.2 In base n, let a
b and c

d be fractions. Then a∗

b∗ + c∗

d∗ is the
infinite decimal associated with the rational number a

b + c
d .
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Proof By the usual techniques for adding fractions,

a

b
+
c

d
=
a · d+ b · c

b · d
But also, as infinite decimals, by Exercise 7.20.3,

a∗

b∗
+

c∗

d∗
=

(a∗)·(d∗)+(b∗)·(c∗)

(b∗)·(d∗)

=
(a·d)∗+(b·c)∗

(b·d)∗

=
(a·d+b·c)∗

(b·d)∗

and this is the infinite decimal we have associated with a·d+b·c
b·d ,that is, with

a
b + c

d .

Similar results must be established for multiplication, order, subtraction,
division. These are left as exercises, and involve the results of Section 20.
For exercises 7.21.2 through 7.21.5, the setting is base n, and a

b and c
d are

fractions.

Exercises

Exercise 7.21.1 Use the definition of division for infinite decimals and
show, in base 10, 2∗

6∗ = .3333 . . ..

Exercise 7.21.2 Show a∗

b∗ · c
∗

d∗ is the infinite decimal associated with the
rational number a

b · cd .

Exercise 7.21.3 Show a∗

b∗ >
c∗

d∗ if and only if a
b >

c
d .

Exercise 7.21.4 Suppose a
b ≥ c

d . Show a∗

b∗ − c∗

d∗ is the infinite decimal
associated with the rational number a

b − c
d .

Exercise 7.21.5 Suppose c
d 6= 0. Show a∗

b∗ ÷ c∗

d∗ is the infinite decimal
associated with the rational number a

b ÷ c
d .

Finally, we have an important result that essentially says an infinite
decimal is determined completely if we know what rational numbers it is
bigger than.

Exercise 7.21.6 In base n, let A be an infinite decimal, and let C be
the collection of all infinite decimals which are: 1) associated with rational
numbers and 2) are smaller than A. Prove that A is the least upper bound
of C. Hint: among those infinite decimals corresponding to rationals are
the finite decimals.
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7.22 Computing divisions

We know that, provided B 6= 0∗, A
B is meaningful. But our proof of this in

Section 19 is of no direct help if we want to compute A
B for particular choices

of A and B. In this section we develop techniques for actually producing
better and better approximations to A

B .

Theorem 7.22.1 In base n, let A and B be infinite decimals with B 6= 0∗.
We define a sequence of terminating decimals as follows.

Let d0 be the largest whole number such that A ≥ B · (d0)∗.
Let d1 be the largest one-place decimal such that A ≥ B · (d1)∗.
Let d2 be the largest two-place decimal such that A ≥ B · (d2)∗.
Etc.
Then the sequence (d0)∗, (d1)∗, (d2)∗, . . . has a limit, and that limit is

A
B .

Proof By the first two exercises below, we know the sequence (d0)∗, (d1)∗,
(d2)∗, . . . has a limit, call it L. By the second of these exercises, A

B ≥ (di)∗

for each i, so A
B ≥L. We claim A

B = L.
Suppose not, that is, suppose A

B > L. Then there is a terminating decimal
T between them, A

B > T > L. T is associated with some finite decimal,
say d. That is, T = (d)∗, so A

B > (d)∗ > L. Let us say d is a k-place finite
decimal. Since A

B > (d)∗, A
B · B > (d)∗ · B or A > B · (d)∗. But, dk is the

largest k-place finite decimal such that A ≥ B · (dk)∗, so dk ≥ d, and so
(dk)∗ ≥ (d)∗ > L. But also, L, being the limit of a non-decreasing sequence,
is also its least upper bound, so L ≥ (dk)∗. This is a contradiction, so it
must be that A

B = L.

This theorem provides us with a concrete sequence (d0)∗, (d1)∗, (d2)∗, . . .
of better and better approximations to A

B , and Exercise 7.22.3 will give
us a technique to calculate them. According to Exercise 7.22.3, having
calculated dk, in order to calculate dk+1, a better approximation to A

B ,
we don’t need to begin all over again. We only need to determine the last
decimal place of dk+1; we already know all the others since we know what
dk is. And, in base n, there are only n possibilities for that last decimal
place, so we can determine it by trial and error.

For example, consider the base 10 problem:

.63237528 . . .

.20301764 . . .
=
A

B
.

Suppose, using the technique outlined above, we have already produced a
one-place approximation to A

B . That is, we have found the largest one-place
decimal d1 such that A ≥ B ·(d1)∗. In fact, d1 = 3.1. Now we want a better,
two-place approximation to A

B . We want the largest two-place decimal d2

such that A ≥ B · (d2)∗. By Exercise 7.22.3 we know d2 = 3.2 , and there
are only 10 possible digits to fill that blank.
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By guesswork we decide to try 2 first. But B · (3.12)∗ = (.20301764 . . .) ·
(3.120000 . . .) = .6334 . . . > .6323 . . . = A so 2 is too big.

So we try 1 next. This time B ·(3.11)∗ = (.20301764 . . .) ·(3.110000 . . .) =
.6316 . . . < .6323 . . . = A, so 1 is the correct last digit. d2 is 3.11, and (3.11)∗

is a better approximation to A
B than (3.1)∗ was.

This technique of approximating to a division is easiest in base 2 as there
are only two digits to try.

Exercises

Exercise 7.22.1 Show (d0)∗, (d1)∗, (d2)∗, . . . is non-decreasing.

Exercise 7.22.2 Show A
B is an upper bound for the sequence (d0)∗, (d1)∗,

(d2)∗, . . ..

Exercise 7.22.3 In the sequence (d0)∗, (d1)∗, (d2)∗, . . ., show the follow-
ing. All terms have the same whole number parts. All terms from (d1)∗ on
have the same first decimal places. All terms from (d2)∗ on have the same
second decimal places. And so on.

Exercise 7.22.4 In base 2, work out a four-place approximation to

11.0110111001 . . .
1.1101011000111 . . .

.

7.23 Repeating decimals and rational numbers

We know there are infinite decimals that behave like rational numbers. In
this section we see how easy they are to produce and to recognize.

We begin with a base 10 example. Consider the fraction 3
11 . In Section 4

of Chapter 6 we gave a method of approximating to this arbitrarily closely
by finite decimals, using long division. For instance, if we want a 5-place
approximation we compute:

.27272
11)3.00000

22
80
77
30
22
80
77
30

Now, .27272 is not 3
11 , as a matter of fact, 3

11 > .27272. But the discussion
in Chapter 6 shows .27272 is the best 5-place decimal approximation to 3

11
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from underneath. That is, .27272 is the largest 5-place decimal d satisfying
3 ≥ 11 · d.

So much for finite decimals. Now we turn to the problem of approxi-
mating to the infinite decimal 3∗

11∗ , which is the counterpart of the rational
number 3

11 . Suppose we try the technique of the last section to produce a
sequence of better and better approximations to the infinite decimal 3∗

11∗ .
Using the notation from that section, dk is the largest k-place decimal such
that (3)∗ ≥ (11)∗ · (dk)∗. Then by our discussion above, d5 must be .27272.
And since all terms in the sequence (d0)∗, (d1)∗, (d2)∗, . . . from (d5)∗ on
have the same first decimal places, we know that the infinite decimal 3∗

11∗

must begin .27272 . . ..
This discussion is clearly a general one. We can compute as many places

of 3∗

11∗ as we want by carrying out the finite decimal division 11)3.00 . . . 0
‘far enough’. And similarly for any other infinite decimal corresponding to
a rational number.

Going back to the example above, 3∗

11∗ in base 10. We found that, written
as an infinite decimal it began .27272 . . .. There seems to be a regular
pattern, namely 27, that repeats. More generally,

Definition 7.23.1 In base n, if an infinite decimal, after some initial string
of decimal places, consists of a block of digits repeated over and over, it is
called a repeating decimal.

For example, the following are repeating decimals:

28.613247247247247 . . .
18.333333 . . .
7.6500000 . . .

It looks like 3∗

11∗ is a repeating decimal. In fact it is, and something much
more general is true.

Theorem 7.23.2 In base n, any infinite decimal which corresponds to a
rational number is a repeating decimal.

Rather than prove this in detail, we give an example which will illustrate
all the ideas of a proof quite well. Let us show that, in base 10, (18)∗

(241)∗ must
be a repeating decimal. Well, as we have seen, we may generate this infinite
decimal by computing more and more places of

241)18.0000 . . .

This computation begins

.07
241)18.0000 . . .

16 87
1 13
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and at this stage we have a remainder of 113. After the next step we have

.074
241)18.0000 . . .

16 87
1 130

964
166

At this stage we have a remainder of 166. And so on. Now, at each step
the remainder must be smaller than 241. Since there are only 241 whole
numbers smaller than 241 (counting 0), after at most 241 steps we must
repeat an earlier remainder. And it is easy to see that, having repeated an
earlier remainder the entire calculation from that point on must repeat.
Thus we get a periodic decimal, and we know it must repeat after at most
241 terms.

In fact, the converse of this theorem is also true.

Theorem 7.23.3 In base n, a repeating decimal is one which corresponds
to a rational number.

Once again, rather than give a detailed proof, we give an example which
will illustrate the ideas of such a proof. We show that in base 10, 7.282828 . . .
corresponds to a rational number.

Let us set A = 7.282828 . . . This repeats with a ‘cycle’ of 2, so if we move
the decimal point two places to the right we get an infinite decimal with the
same decimal part. We know multiplying by (10)∗ moves a decimal point
one place to the right, so multiplying by (100)∗ = (10)∗ · (10)∗ moves it two
places. Thus (100)∗ ·A = 728.282828 . . .. Now if we subtract (100)∗ ·A−A,
the decimal parts cancel:

728.282828 . . .
− 7.282828 . . .

721.000000 . . .

So
(100)∗ ·A−A = (721)∗

(100)∗ ·A− (1)∗ ·A = (721)∗

[(100)∗ − (1)∗] ·A = (721)∗

(99)∗ ·A = (721)∗

A =
(721)∗

(99)∗

so A corresponds to a rational number, 721
99 .

We now know precisely what infinite decimals correspond to rational
numbers: they are the repeating decimals. So it is easy to produce an ex-
ample of an infinite decimal that does not correspond to a rational number,
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for example .1010010001000010000010000001 . . .. In this, there are longer
and longer strings of 0’s, but there is no fixed block that repeats. Also, we
showed in Section 1 that

√
2 was not a rational number. It follows that if

there is an infinite decimal whose square is (2)∗, it can not be a repeating
decimal.

From now on we are going to drop the distinction between rational num-
bers and the infinite decimals that correspond to them. We will simply
write 2

3 , say, and mean ambiguously the rational number named by this
fraction, and the infinite decimal 2∗

3∗ . This will cause no problems, and will
make reading easier.

Exercises

Exercise 7.23.1 In base 2, by the methods above, compute (11)∗

(101)∗ to 6
places.

Exercise 7.23.2 In base 2, what repeating decimal is (1)∗

(11)∗ ?

Exercise 7.23.3 Translate the base 2 fraction 1
11 into base 10, then find

a base 10 repeating decimal to correspond to it.

Exercise 7.23.4 Find a fraction to correspond to .100100100100 . . . in
base 2.

Exercise 7.23.5 Consider the infinite decimal (.110110110110 . . .)2. Find
a base 10 counterpart. That is, find a fraction, written in base 2 notation,
associated with (.110110110110 . . .)2, convert that fraction into base 10
notation, then find the base 10 infinite decimal associated with it.

7.24 Translating from one base to another

We have been developing systems of infinite decimals for all bases. But, all
of these systems are equivalent. We already know how to translate from
one base to another for certain kinds of infinite decimals, the repeating
ones, since these are rational numbers which are available in any system of
infinite decimals. Now we extend that translation in a natural way to cover
all infinite decimals, repeating or not.

We know how to go from one base to another for rational numbers. Now
suppose we don’t have a rational. What might we do? As an example, we
try to produce a reasonable counterpart in base 10 for the base 2 infinite
decimal

(.101101110111101 . . .)2

Whether or not this is a rational number, it is the limit of a sequence of
rational numbers, (.1)∗, (.10)∗, (.101)∗, (.1011)∗, etc. And each term in this
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sequence has its base 10 counterpart. Translating these into base 10 gives
us the following.

(.1)∗2 = (
1

2
)2 = (

1

2
)10 = (.500000000000 . . .)10

(.10)∗2 = (
10

100
)2 = (

2

4
)10 = (.500000000000 . . .)10

(.101)∗2 = (
101

100
)2 = (

5

8
)10 = (.625000000000 . . .)10

(.1011)∗2 = (
1011

10000
)2 = (

11

16
)10 = (.6871500000 . . .)10

etc.

We are producing a sequence of base 10 infinite decimals. It is easy to
see this is a non-decreasing sequence which is bounded from above (by 1,
say), so it has a limit, L. We haven’t carried the calculations out far enough
yet to say much about what the base 10 infinite decimal L looks like. Still,
L exists, and it is quite reasonable to call L the base 10 counterpart of
(.1011011101 . . .)2.

So we have a very natural way of translating this particular base 2 infinite
decimal into base 10. And it should be clear that our discussion has really
been quite general, and would work for any infinite decimal from any base
to any base.

Definition 7.24.1 Let A = wA.a1a2a3a4 . . . be a base n infinite decimal.
We define the base k translate of A as follows. First, construct the following
sequence of base n terminating decimals.

A0 = (wA)∗

A1 = (wA.a1)∗

A2 = (wA.a1a2)∗

etc.

These, being rational numbers, have their counterparts in base k. Let A′i
be the base k counterpart of Ai. Let A′ be the limit of the sequence of
base k infinite decimals A′0, A′1, A′2, A′3, . . .. We define A′ to be the base k
translate of A.

This is not the only way a translation from base to base can be defined.
Here is a second approach.

Alternate definition Let A be a base n infinite decimal, and let C be the
collection of all base n infinite decimals which are rationals smaller than
A. (A is the least upper bound of C). Let C′ be the collection of base k
counterparts for the members of C. (It is easy to see C′ is bounded from
above and so has a least upper bound.) Let A′ be the least upper bound of
C′ in the system of base k infinite decimals. We define A′ to be the base k
translate of A.
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The equivalence of the two definitions is left as a series of exercises.
We now have a systematic way of translating infinite decimals from one

base to another. By itself, that does not establish the essential equivalence
of any two bases; we have yet to see how the translation procedure relates
to addition, multiplication and the like. For example, if we are going from
base 2 to base 10, does it matter whether we carry out our additions in
base 2, then translate the result into base 10, or whether we first translate
the infinite decimals being added into base 10, and carry out the additions
there? In fact, we get the same result either way. And a similar thing
happens for subtraction, multiplication and division. But in order to prove
this conveniently we need a more general notion of limit than we have been
using. Introducing it and developing its properties would take us too far
afield, so we content ourselves by saying, “this can be shown.” Nothing
that follows depends on it.

Exercises

Exercise 7.24.1 Find a base 2 counterpart for the base 10 repeating dec-
imal (.16161616 . . .)10. Do this by converting the decimal into a base 10
fraction, that into a base 2 fraction, and that into a base 2 infinite decimal.

Exercise 7.24.2 The translation procedure from base 2 to base 10 will
work, of course, even if the infinite decimal happens to be rational. Re-do
the previous exercise using the technique we outlined for infinite decimals.

Exercise 7.24.3 Prove in Definition 7.24.1 that A′0, A′1, A′2, A′3, . . . has a
limit.

Exercise 7.24.4 In base n, let C be the collection of all rationals smaller
than L, and let A1, A2, A3, A4, . . . be a bounded, non-decreasing sequence
having L as limit. Show that for each B in C there is a term of the sequence,
Ak, such that B > Ak.

Exercise 7.24.5 In base n, let C be a collection of rationals having C as
least upper bound, and let A1, A2, A3, A4, . . . be a non-decreasing sequence
of rationals having L as limit. Suppose each Ak is in C and for each B in
C there is a term of the sequence Ak such that B > Ak. Prove C = L.

Exercise 7.24.6 Prove the two definitions of translation give the same
results.

7.25 Square roots

We saw in Section 21 that the system of base n infinite decimals can be
thought of as extending the system of rational numbers. We also saw in
Section 23 that there were infinite decimals (the non-repeating ones) that
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did not correspond to any rational number, hence we have a strictly larger
system. But even so, do we have enough? This Chapter began by showing
an inadequacy of the rational number system, there was no square root for
2. Well, is there one in the larger system of infinite decimals?

In this section we show that every infinite decimal has a square root,
and we discuss briefly how to compute it. This is as far as we take things.
But by a similar though more complicated argument one can show that kth

roots always exist for any k = 2, 3, 4, . . .. Once this is known, it is possible
to develop a general theory of exponents, something we were also able to
do in the whole number system, though not in the rational one. But this is
further than we wish to carry things. We stop after square roots.

Theorem 7.25.1 In base n, let A be an infinite decimal. There is an in-
finite decimal B such that B2 = B ·B = A.

Proof Form a collection C of base n infinite decimals as follows: put X in
C just when X2 ≤ A. That is,

C = {X | X2 ≤ A}

Since 0 · 0 = 0 ≤ A then C contains 0 and so is not empty.
Next we show C has an upper bound. More precisely, we show A+ 1 is

an upper bound. Well, suppose X ∈ C. If we had X > A+1 then we would
have

X ·X > (A+ 1) · (A+ 1)
> A · (A+ 1) (by Theorems 7.17.1 and 7.17.3)
= A ·A+A · 1
= A ·A+A
≥ A

that is, X2 > A which is impossible since X ∈ C. Thus if X ∈ C then
X ≤ A+ 1 so C has an upper bound.

Then by Theorem 7.9.7, C has a least upper bound, call it B. We claim
B2 = A, and we show this by deriving contradictions from both B2 < A
and B2 > A.

Case 1: Suppose we had B2 < A. Then A−B2 is meaningful, and is not
0. Also 2 ·B+ 1 ≥ 1 > 0 so 2 ·B+ 1 is not 0. Then by Lemma 7.19.2 there
is an infinite decimal K 6= 0 such that K · (2 ·B+ 1) < (A−B2). Now if we
have some choice of K that satisfies this inequality, so would any smaller
choice, so we can always arrange things so that K is smaller than 1 as well.
We suppose this has been done, and thus 0 < K < 1. Now consider the
infinite decimal B + K. Since K > 0, B + K > B. Since B is the least
upper bound for C, this says B + K is not a member of C. On the other
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hand,

(B +K)2 = B2 + 2 ·B ·K +K2

= B2 +K · (2 ·B +K)
< B2 +K · (2 ·B + 1) (since K < 1)
< B2 + (A−B2)
= A

which says B +K ∈ C. We have reached a contradiction. Thus we do not
have B2 < A.

Case 2: Suppose we had B2 > A. Then (following the proof of Theo-
rem 7.19.3) we proceed as follows.

Since B ·B > A there is a terminating decimal T between them, B ·B >
T > A. By Lemma 7.13.4 there are terminating decimals b and c with
B > b, B > c, and b · c > T . Let d be the larger of b and c. Then B > d
and

d2 = d · d
≥ b · c
> T
> A

Since d2 > A it follows that d is an upper bound for C (show this). But
d < B and B is the least upper bound for C so d could not be an upper
bound. This contradiction says we do not have B2 > A.

The proof is complete.

Next we turn to the problem of actually computing square roots. This is
modeled on the work in Section 22.

Theorem 7.25.2 In base n, let A be an infinite decimal. We define a
sequence of terminating decimals as follows.

Let d0 be the largest whole number such that (d∗0)2 ≤ A.
Let d1 be the largest one-place decimal such that (d∗1)2 ≤ A.
Let d2 be the largest two-place decimal such that (d∗2)2 ≤ A.
Etc.
Then the sequence d∗0, d∗1, d∗2, . . . has a limit, and that limit is the square

root of A. Further, in this sequence all terms have the same whole number
parts; all terms from d∗1 on have the same first decimal places. All terms
from d∗2 on have the same second decimal places. And so on.

We leave the proof of this theorem to you as a series of exercises. By
using this theorem we can calculate square roots as follows. Say we want,
in base 10, the square root of 2. We begin by finding the largest whole
number d0 whose square is ≤ 2. Clearly this is 1. Next we find the largest
one-place decimal d1 whose square is ≤ 2. But d1 has the same whole
number part as d0, hence all we need do is fill in the blank in d1 = 1. . We
can use trial-and-error, since there are only 10 possibilities. A little work
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shows d1 = 1.4. Then d2 must be of the form 1.4 and we can fill the blank
here by yet another trial-and-error search.

By these means we can compute approximations to the square root of
2 to however many decimal places we desire. In practice there are much
better methods of computing square roots. This is not the place to go into
them. We have shown the existence of at least one method.

Exercises

Exercise 7.25.1 Show that square roots are unique. That is, suppose
X2 = A and Y 2 = A and show X = Y .

Exercise 7.25.2 Show d∗0, d∗1, d∗2, . . . is non-decreasing in Theorem 7.25.2.

Exercise 7.25.3 Let B be the square root of A. Show B is an upper bound
for the sequence d∗0, d∗1, d∗2, . . ., using the notation of Theorem 7.25.2.

Exercise 7.25.4 Using the notation of Theorem 7.25.2, by the two previ-
ous exercises the sequence d∗0, d∗1, d∗2, . . . has a limit. Show that the limit is
the square root of A.

Exercise 7.25.5 Still using the notation of Theorem 7.25.2, for the se-
quence d∗0, d∗1, d∗2, . . ., show all terms have the same whole number parts;
all terms from d∗1 on have the same first decimal places; etc.

Exercise 7.25.6 In base 2 compute a 4-place approximation to the square
root of (10)2 = (2)10.

7.26 Real numbers

We now have carried the development of the system of base n infinite
decimals quite far. We have established many general properties, and we
know any two bases are intertranslatable.

From now on we no longer specify what base we are working in, because
from now on it doesn’t matter. We are interested only in general structural
properties common to all bases (like commutativity of addition) not in
computational pecularities (such as whether 1 + 1 is denoted 2 or 10). To
emphasize this point, from now on we will rarely use the term ‘infinite
decimal’. Rather we will talk of real numbers. You may think of the system
of real numbers as being the system of base n infinite decimals for some
fixed choice of n. Pick your favorite value. If we have examples to give, we
will give them using the conventional choice, base 10.
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Signed Numbers
Her age, upon the date
Of his birth, was minus eight,
If she’s seventeen and he is five-and-twenty!

Iolanthe
W. S. Gilbert

8.1 Introduction

We have seen number systems developed in which one can express how
many, and how long. Now we introduce signed numbers, which are used to
express, by how much did something change, understanding that changes
can be increases or decreases.

There are several places in this book where signed numbers could have
been introduced. All that was needed was a ‘suitable’ number system that
included 0. Thus signed numbers could have been introduced after Chapter
Three on whole numbers, or after Chapter Five on rational numbers, or
after Chapter Seven on real numbers. Consequently we have written this
to some extent as a ‘floating’ chapter. You may think of it as coming after
whichever of those three chapters you like.

Throughout this chapter we use the ambiguous term number. You may
read it systematically as meaning whole number, or as meaning rational
number, or as meaning real number. The particular choice does not matter,
as we said, but make one and keep it in mind. When we narrow things down
to real numbers, we will say so.

8.2 Signed numbers

There are many reasons why signed numbers are useful. One to keep in
mind for motivation in the next few sections is that it is important to have
a system in which changes in quantity, as well as absolute amounts, can be
easily expressed.

Let us imagine we are talking about the ocean, or a mountain of sand,
or the national debt, or whatever. The item should be large enough so that
our personal alterations will not exhaust it. Now, suppose you are told:
increase it by this, decrease it by that, do thus and so. Then you are asked:
by how much have you changed it? We want a number system in which
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such calculations can be easily carried out.
What we need are two distinct copies of our number system, one rep-

resenting instructions to increase something by that amount, the other
representing instructions to decrease. But no change at all is both an in-
crease and a decrease by 0, which means 0 should belong to both groups of
instructions. This is awkward, since we want to be clear, in every instance,
whether we are talking about an increase or decrease. It is best, then, to
create a third category, just for 0. Thus, what we really want is a system
in which there are two copies of the non-zero numbers, one intuitively rep-
resenting increases, the other, decreases, and also there is 0, representing
no change.

In order to symbolically represent our two copies of the collection of
non-zero numbers we introduce two symbols, I and D which can be used
as prefixes. If X is a non-zero number, we can think of IX as telling us:
increase whatever is being talked about by X, and we may think of DX as
telling us: decrease it by X. Please note: IX is not I times X. I is not a
number. Intuitively, I and D are instructions.

Definition 8.2.1 By a signed number we mean IX or DX where X is a
non-zero number, or we mean 0.

In order to emphasize the distinction, we will often call the numbers
of earlier chapters unsigned numbers. We use the informal convention of
letting capitals, X, Y , Z, etc. represent unsigned numbers. From now on
we will systematically use small letters, x, y, z etc. to represent signed
numbers. Thus if we say: let x be a signed number, we mean: either x is 0,
or there is a non-zero unsigned number X and x is one of IX or DX.

Definition 8.2.2 A signed number is called positive if it is of the form IX
and negative if it is of the form DX.

Thus positive signed numbers intuitively represent increases, and nega-
tive signed numbers, decreases.

Important Observation Every signed number is either positive, zero, or
negative. No signed number fits into more than one of these categories.

Next we define an operation of changing the sign.

Definition 8.2.3 Let x be a signed number. We define −x as follows.

−x =

 DX if x = IX
IX if x = DX
0 if x = 0

Intuitively, whatever x tells you to do, −x tells you to do the opposite.



198 8.2. Signed numbers

Exercises

Exercise 8.2.1 Show −(−x) = x.

Exercise 8.2.2 Show that x = −x if and only if x = 0.

8.3 Addition

A definition of addition for signed numbers is easy to motivate, even if
lengthy to state in full. Remember the underlying idea that positive num-
bers represent instructions to increase, negative numbers, to decrease.

Suppose you are told: increase by 2, then increase again by 5. Clearly
this gives an increase of 2 + 5, or 7. Then I2 + I5 ought to be I(2 + 5), or
I7.

Suppose you are told: increase by 2, then decrease by 7. Clearly the net
effect is a decrease by 5. That is, I2 +D7 ought to be D(7− 2), or D5.

Considerations like these lead to the definition below. It has many parts
since x can be positive, 0, or negative, and similarly for y. Thus it is simplest
to give it partly in chart form.

Definition 8.3.1 Let x and y be signed numbers. We define x + y as
follows.

First, if one of x or y is 0:

x+ 0 = x

0 + y = y.

Next, if neither x nor y is 0:

if x is and y is then x+ y is
IX IY I(X + Y )
DX DY D(X + Y )

IX DY

 I(X − Y ) if X > Y
0 if X = Y
D(Y −X) if Y > X

DX IY

 D(X − Y ) if X > Y
0 if X = Y
I(Y −X) if Y > X

Thus the general pattern is the familiar: if the two signs are the same,
add the unsigned numbers and give the result the common sign; if the signs
are different, subtract the unsigned numbers, whichever way makes sense,
and give the result the sign of the larger.

Since the definition of addition is in several cases, we may expect proofs of
theorems on addition to involve several cases too. So we begin with a result
that may be used to reduce the number of cases that need be considered.
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Theorem 8.3.2 For any signed numbers x and y, −(x+y) = (−x)+(−y).

Proof First, if either x or y is 0, the result is immediate.
Now, if neither x nor y is 0, then there are two possibilities for x, positive

and negative, and similarly for y. Thus there are 2 ·2 or 4 cases to consider.
Case 1: x and y both positive, say x = IX and y = IY . Then

−(x+ y) = − [IX + IY ]
= − [I(X + Y )]
= D(X + Y )
= DX +DY
= [−(IX)] + [−(IY )]
= (−x) + (−y).

Case 2: x and y both negative, is treated similarly.
Case 3: x positive, y negative, say x = IX and y = DY . Then, using

Exercise 8.3.2,

−(x+ y) = − [IX +DY ]
= DX + IY
= [−(IX)] + [−(DY )]
= (−x) + (−y).

Case 4: x negative, y positive, is treated similarly.

Now we see how this theorem may be used.

Theorem 8.3.3 (Commutativity of addition) x+ y = y + x.

Since x can be positive, zero or negative, and similarly for y, there would
seem to be 3 · 3 or 9 cases to consider. But, if either x or y is 0 the result is
trivial, so we are effectively reduced to 2 · 2 or 4 cases. Further, we can cut
that number in half since, if the result is true for x and y, it is also true
for −x and −y. This happens since, using Theorem 8.3.2, if we know that
x+ y = y + x, then

(−x) + (−y) = −(x+ y)
= −(y + x)
= (−y) + (−x).

Thus if we have the theorem for positive x and y, we automatically have it
for negative x and y. Similarly if we have it for positive x and negative y,
we also have it the other way around. So finally, we are reduced to actually
showing the theorem in the following two cases:

1. x and y positive,

2. x positive, y negative.
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We leave this to you.

Theorem 8.3.4 (Associativity of addition) x+ (y+ z) = (x+ y) + z.

We spend the rest of this section on a proof of Theorem 8.3.4. Most of
our discussion will be devoted to reducing the 3 · 3 · 3 or 27 cases to a
manageable number.

First, if any of x, y or z is 0, the result is simple. This reduces things to
2 · 2 · 2 or 8 cases.

Next, by using Theorem 8.3.2 as we did above, these 8 cases can be cut
in half.

By Exercise 8.3.4 it suffices to show the truth of the theorem in four
cases, specifically we consider: the case where x, y and z are all positive;
the three cases where two of x, y and z are positive, one is negative.

Exercise 8.3.5 leaves us with three cases to consider. But, in fact, two of
these follow from the third. We show this for one and leave the other as an
exercise.

Temporary assumption x+ (y+ z) = (x+ y) + z whenever x and y are
positive, z is negative.

Consequence of temporary assumption x + (y + z) = (x + y) + z
whenever x is negative, y and z are positive.

Proof of consequence Suppose x = DX, y = IY and z = IZ. Then

x+ (y + z) = DX + (IY + IZ)
= (IY + IZ) +DX by Theorem 8.3.3
= (IZ + IY ) +DX by Theorem 8.3.3
= IZ + (IY +DX) by Temporary Assumption
= (IY +DX) + IZ by Theorem 8.3.3
= (DX + IY ) + IZ by Theorem 8.3.3
= (x+ y) + z

Finally, using Exercise 8.3.6 we are left with one case, that embodied in
our temporary assumption. We now establish that.

Lemma 8.3.5 x+ (y + z) = (x+ y) + z whenever x and y are positive, z
is negative.

Proof Say x = IX, y = IY and z = DZ. There are three cases to consider.
These are:

1. X + Y > Z

2. X + Y = Z

3. X + Y < Z.
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We show case 1, the most complicated and leave the other two as exercises.
case 1: X + Y > Z. Then

(x+ y) + z = (IX + IY ) +DZ
= I(X + Y ) +DZ
= I [(X + Y )− Z]

So we must show x + (y + z) is also this quantity. And there are three
subcases:

Subcase 1a: Y > Z. Then

x+ (y + z) = IX + (IY +DZ)
= IX + I(Y − Z)
= I [X + (Y − Z)]

and this is I [(X + Y )− Z] by properties of subtraction for unsigned num-
bers.

Subcase 1b: Y = Z. Then

x+ (y + z) = IX + (IY +DZ)
= IX
= I [X + (Y − Z)]

and by subtraction properties again, this is I [(X + Y )− Z].
Subcase 1c: Z > Y . Then

x+ (y + z) = IX + (IY +DZ)
= IX +D(Z − Y )

Now, in case 1, X + Y > Z, so in this subcase, X > Z − Y , hence this
is I [X − (Z − Y )] and by subtraction properties, this is I [(X + Y )− Z].
This completes case 1.

Exercise 8.3.7 completes the proof of Theorem 8.3.4.

Thus we have commutativity and associativity of addition for signed
numbers, so from now on we will generally drop parentheses in sums, since
their exact placement doesn’t matter.

Exercises

Exercise 8.3.1 Prove that x+ (−x) = 0.

Exercise 8.3.2 Show

1. − [IX +DY ] = DX + IY
2. − [DX + IY ] = IX +DY .

Do this by considering the three cases: X > Y , X = Y and Y > X.
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Exercise 8.3.3 Prove theorem 8.3.3 by establishing the two cases given
above.

Exercise 8.3.4 Show that if x+(y+z) = (x+y)+z, then (−x)+[(−y)+
(−z)] = [(−x) + (−y)] + (−z).

Exercise 8.3.5 Show that x+ (y+ z) = (x+ y) + z if all of x, y and z are
positive.

Exercise 8.3.6 Show the following is also a consequence of the temporary
assumption: x+ (y + z) = (x+ y) + z whenever x and z are positive, y is
negative.

Exercise 8.3.7 Complete the proof of Lemma 8.3.5 by considering the
other two cases. Note that in case 2, X + Y = Z, there are no subcases
since Y < Z, and in case 3, X +Y < Z, there are no subcases since Y < Z
(why?).

8.4 Multiplication

An appropriate definition of multiplication for signed numbers is not easy
to discover. After all, the underlying idea behind signed numbers is to
simplify addition and subtraction. Multiplication does not play any role in
this, so our intuitive feelings about how signed numbers ‘ought to behave’
are not going to get us very far now. Other considerations must be used.
One reasonable guide is that the basic laws of multiplication for unsigned
numbers should continue to work for signed numbers. In fact, using this
idea, we will be able to deduce what the definition of multiplication ought
to be.

First, we want the system of signed numbers to be an extension of the
system of unsigned numbers. That is, we want certain signed numbers to
‘act like’ the unsigned numbers did. The most natural candidates are the
positive numbers, since the quantity X is also the result of an increase by
X, starting from 0. Thus it is plausible that IX and X should behave alike
in their respective number systems. But then, we must have

(IX) · (IY ) = I(X · Y )

So we have the first part of a proposal for a definition of multiplication.
Considerations like this also suggest 0 · x and x · 0 should be 0 if x is not

negative; they do not directly suggest a value if x is negative. So, we turn
to other methods. Suppose we assume multiplication has been defined in
such a way that the distributive law holds. Then we would have

x · 0 = x · (0 + 0) = x · 0 + x · 0
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Now, adding −(x·0) to both sides (and using Exercise 8.3.1) we get 0 = x·0.
If we assume the commutative law holds we also would have 0 · x = 0 so
we have some more parts of a proposal for a definition of multiplication.

Continuing along these lines, making the same assumptions, and using
what we just came up with, we would have

0 = (IX) · 0
= (IX) · [IY +DY ]
= (IX) · (IY ) + (IX) · (DY )
= I(X · Y ) + (IX) · (DY )

Now, adding D(X · Y ) to both sides we get D(X · Y ) = (IX) · (DY ). Thus
two more parts of our definition are

(IX) · (DY ) = D(X · Y )

(DX) · (IY ) = D(X · Y )

Finally Exercise 8.4.1 gives us the last part and we are led to the follow-
ing.

Definition 8.4.1 Let x and y be signed numbers. We define x·y as follows.
First, if one of x or y is 0:

x · 0 = 0

0 · y = 0

Next, if neither x nor y is 0:

if x is and y is then x · y is
IX IY I(X · Y )
IX DY D(X · Y )
DX IY D(X · Y )
DX DY I(X · Y )

Thus we have the familiar, two negatives make a positive, etc. We have
seen that if the basic laws of multiplication are to hold, the definition must
be as given above. Now we must check whether, given this definition, the
laws in fact do hold.

Theorem 8.4.2 (Commutativity of multiplication)
x · y = y · x

Proof First, if either x or y is 0, the result is immediate.
Next, there are four cases in which neither x nor y is 0. We do one and

leave the other three as exercises.
Suppose x is positive, y is negative, say x = IX and y = DY . Then

x · y = (IX) · (DY ) = D(X ·Y ) and by commutativity of multiplication for
unsigned numbers, this in turn = D(Y ·X) = (DY ) · (IX) = y · x.

We leave the rest as an exercise.
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Theorem 8.4.3 (Associativity of multiplication) x ·(y ·z) = (x ·y) ·z.

From now on we will freely omit parentheses in products of three or more
signed numbers since, by the two theorems above, their exact placement
doesn’t matter.

Theorem 8.4.4 (Distributive law) x · (y + z) = x · y + x · z.

We conclude this section by showing that some of the clauses of the
definition of multiplication are really special cases of a more general phe-
nomenon. The proofs are rather similar to the informal arguments that led
to the definition of multiplication in the first place.

Theorem 8.4.5 (−x) · y = −(x · y).

Proof 0 = [x + (−x)] · y = x · y + (−x) · y. Now, adding −(x · y) to both
sides, we get −(x · y) = (−x) · y.

Exercises

Exercise 8.4.1 Show that if the distributive law holds, and the discussion
preceeding the definition of multiplication is accepted, then (DX) · (DY ) =
I(X · Y ).

Exercise 8.4.2 Show (I1) · x = x.

Exercise 8.4.3 Complete the proof of Theorem 8.4.2 by doing the other
three cases.

Exercise 8.4.4 Prove Theorem 8.4.3.

Exercise 8.4.5 Prove Theorem 8.4.4

Exercise 8.4.6 Prove x · (−y) = −(x · y).

Exercise 8.4.7 Prove (−x) · (−y) = x · y.

8.5 Subtraction and division

Both subtraction and division (when appropriate) are very easy to treat,
since they may be reduced to addition and multiplication respectively. Hav-
ing done this, there is little else to say. We should mention, though, that
the ease of subtraction for signed numbers is a little misleading. Actually,
subtraction has been built into the definition of addition in Section 3. Many
results about subtraction of unsigned numbers were needed to establish the
associative law for addition of signed numbers. In short, subtraction has
been simplified by shifting the area of complexity to addition.
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We first discuss subtraction, then division. As usual, we want a − b to
be that quantity which will get us from b to a. That is, we want a − b to
be the unique solution of b + x = a. But it is easy to produce a solution
to this equation, just add −b to both sides, use Exercise 8.3.1 (and the
associativity and commutativity of addition) to get:

b+ x = a
−b+ b+ x = a+ (−b)

0 + x = a+ (−b)
x = a+ (−b).

Further, this is the only solution. See Exercise 8.5.1.

Definition 8.5.1 For any signed numbers a and b, a− b is a+ (−b).

Remark Notice that a − b is defined whether a is bigger than b or not.
In fact, we have not yet even defined a notion of ‘bigger than’ for signed
numbers.

Next we turn to division. Since exact division was, in general, not possible
in the whole number system, for the rest of this section, number means
either rational number or real number. Then, for each non-zero X, X−1 or
1
X is meaningful.

Now, one useful way of thinking of a− b, or a+ (−b) is: it takes us from
b to a by addition, and it does so in two stages, first the −b gets us from b
to 0, then the a gets us from 0 to a. This suggests an approach to division.
a÷ b is to be that number which will take us from b to a by multiplication.
Now I1 plays the role for multiplication that 0 plays for addition [x+0 = x
and x · (I1) = x]. So perhaps we can get from b to a by multiplication by
first getting from b to I1, then it is easy to get from there to a, just multiply
by a.

Definition 8.5.2 Suppose x 6= 0. We define x−1 as follows: if x = IX
then x−1 = I( 1

X ); if x = DX then x−1 = D( 1
X ).

Remark x−1 can not be defined so that Exercise 8.5.4 holds if x is 0 since
0 · y = 0 for any y. Exercise 8.5.5 serves as motivation for the following
definition.

Definition 8.5.3 If y 6= 0, x÷ y = x · y−1. We often write x
y for x÷ y.

Now that we know what division is for signed numbers, there remains the
problem of how best to compute it. Exercise 8.5.7 treats this. And Exer-
cise 8.5.8 generalizes it in certain ways. Finally, analogs of the properties of
division given in earlier chapters may be proved. A few are listed as further
exercises.
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Exercises

Exercise 8.5.1 Show that if b+ x = a and also b+ x′ = a, then x = x′.

Exercise 8.5.2 Prove the following:

1. a− b = (a− c) + (c− b)
2. (a+ b)− c = a+ (b− c)
3. a− (b+ c) = (a− b)− c
4. a− (b+ c) = (a− c)− b
5. a− b = (a+ c)− (b+ c)

Exercise 8.5.3 Show that, if x 6= 0, (−x)−1 = −(x−1).

Exercise 8.5.4 Show that if x 6= 0, x · x−1 = I1.

Exercise 8.5.5 Show that, if y 6= 0, (x · y−1) · y = x.

Exercise 8.5.6 Suppose b 6= 0. Show the equation b · x = a has just one
solution, x = a

b .

Exercise 8.5.7 Show, if Y 6= 0,

1. IXIY = DX
DY = I(XY )

2. IXDY = DX
IY = D(XY )

Exercise 8.5.8 Suppose y 6= 0 and show:

1. −x−y = x
y

2. −xy = x
−y = −xy

Exercise 8.5.9 If b and d are not 0, show a
b = c

d if and only if a · d = b · c.

Exercise 8.5.10 Show that if b and c are not 0:

1. (b · c)−1 = b−1 · c−1

2. a
b = a·c

b·c

Exercise 8.5.11 If x 6= 0, show (x−1)−1 = x.

Exercise 8.5.12 If a
b 6= 0, show (ab )−1 = b

a .
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8.6 A simplified notation

Whenever we introduced a number system it was important to know that
earlier number systems were not lost. Well now we have created the system
of signed numbers and it is just as important to know the unsigned numbers
are still available; there are signed numbers that behave like them. This was
foreshadowed in Section 4 when we observed: the quantity X is also the
result of an increase by X, starting from 0. In short, the positive numbers
together with 0 can be expected to behave like the unsigned numbers did.

So far we have discussed addition, subtraction, multiplication and divi-
sion, and for each of these operations, it really is the case that the positive
numbers and the unsigned numbers behave alike. More precisely, for any
unsigned numbers X and Y :

IX + IY = I(X + Y )
(IX) · (IY ) = I(X · Y )

IX

IY
= I(

X

Y
) if Y 6= 0 and

X

Y
is defined

IX − IY = I(X − Y ) if X > Y

This similarity of behavior will continue, so we may as well agree to use
the same notation for positive numbers that we do for unsigned numbers.
As long as we know they are different things that act alike, there is no
need to go on emphasizing the distinction symbolically. So from now on
we will write, say, 3.1415926535 . . . and mean by it, ambiguously, either
the unsigned real, 3.1415926535 . . ., or the signed real I3.1415926535 . . .
Similarly we will write 2

3 for either the unsigned rational 2
3 or the signed

rational I 2
3 . This use of 2

3 is thus doubly ambiguous, since it also stands
for a certain real number (and for a particular fraction as well). But again,
all these act alike in their respective number systems, so the distinction is
harmless. Similar remarks apply to whole numbers too.

A further simplification in notation: DX = −(IX) and we are agreeing
to write just X for IX, so we may as well write −X for DX. Thus from
now on we stop using D as well as I, writing −3.1415 . . . for D3.1415 . . ..

Important remark −x is not automatically negative. It is negative only
if x is positive.

Exercises

Exercise 8.6.1 Prove IX − IY = I(X − Y ) if X > Y .

Exercise 8.6.2 Show

1. x = (1) · x
2. −x = (−1) · x.
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8.7 Fields and integral domains

We have now established a number of results about the signed numbers. In
fact, most of them may be summarized by saying the systems of signed reals
and signed rationals are fields, and the system of signed whole numbers is
an integral domain. Fields and integral domains are standard mathematical
structures and much is known about them. In this section we give the
definitions and derive some of their elementary properties.

A field or an integral domain is a non-empty collection, F say, on which is
defined two operations meeting certain conditions. Now in the examples we
are primarily interested in, + and · are used to denote the two operations
so we will use those symbols for an arbitrary field or integral domain as
well. But keep in mind, + and · are simply two operations on F . Depending
on F , they might be something other than addition and multiplication.

Rather than state all the conditions (axioms) at once, we state a few,
discuss them, state a few more, and so on. In our arrangement there are 9
axioms. Most of them are common to both fields and integral domains. You
should check as we go along, that the system of signed numbers satisfies
each of the axioms.

Axiom 1 F is closed under + and ·.

This means that if we apply the operation + to two members of F , the
result is a member of F . Similarly for ·. For example, the positive numbers
are closed under multiplication, the negative numbers are not. Of course,
the entire set of signed numbers is closed under addition and multiplication
as we have defined them.

Axiom 2 (Commutativity) For any members x and y of F ,

x+ y = y + x

x · y = y · x

Axiom 3 (Associativity) For any members x, y and z of F ,

x+ (y + z) = (x+ y) + z

x · (y · z) = (x · y) · z

On the basis of the two axioms above, parentheses can be dropped in
sums, and likewise in products, and terms in sums or products can be re-
ordered. Mixed sums and products are, of course, a different matter. They
are the subject of the next axiom.

Axiom 4 (Distributivity) For any members x, y and z of F ,

x · (y + z) = x · y + x · z
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Axiom 5 (Additive identity) There is a member of F , call it O, satis-
fying the condition x+O = x for every x in F .

Notice this axiom only says there is an additive identity, it doesn’t say
there is only one. But in fact that follows rather easily.

Theorem 8.7.1 In any field or integral domain, there is only one additive
identity.

Proof Suppose O and O′ were both additive identities. Then, for every x
in F ,

1) x+O = x
2) x+O′ = x.

Now, let x be O′ in 1) and let x be O in 2) , to get:
1′) O′ +O = O′

2′) O +O′ = O.
But O′ +O = O +O′ by Axiom 2, so by 1′) and 2′), O = O′.

In the system of signed numbers, the additive identity is 0. To keep no-
tation simple, from now on we will use 0 to symbolize the additive identity
of our field or integral domain whether or not it is the signed numbers.

Axiom 6 (Multiplicative identity) There is a member of F , call it e,
satisfying the condition x · e = x for every x in F .

In the signed numbers, 1 is the multiplicative identity. From now on we
follow custom and use the symbol 1 in any field or integral domain instead
of e.

All the axioms so far are satisfied by the system of unsigned numbers.
The next one is not.

Axiom 7 (Additive inverse) For every x in F there is some y such that
x+ y = 0.

In Axiom 7, y is called an additive inverse of x. The axiom only says x
has an additive inverse; it can be proved it has exactly one.

Lemma 8.7.2 (Cancellation law) In any field or integral domain, if a+
b = a+ c then b = c.

Proof Suppose a+b = a+c. Let d be any additive inverse for a, so a+d = 0.
Then d+ (a+ b) = d+ (a+ c) so by associativity, (d+ a) + b = (d+ a) + c
and by commutativity, (a+d) + b = (a+d) + c; 0 + b = 0 + c; b+ 0 = c+ 0;
and finally b = c.

Theorem 8.7.3 In any field or integral domain, members have unique
additive inverses.
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Proof Suppose x has both y and y′ as additive inverses. Then x + y = 0
and x+ y′ = 0 so x+ y = x+ y′. Then by the lemma, y = y′.

This theorem allows us to introduce the following notation.

Definition 8.7.4 By −x we mean the unique additive inverse of x.

Remark Since −x is the additive inverse of x, x + (−x) = 0. But then,
(−x)+x = 0 and this says x is the additive inverse of −x, or in our notation,
x = −(−x).

In Section 3 we showed the result of Exercise 8.7.3 was true of the signed
reals before showing commutativity, associativity, or any other properties
of addition. We did it that way because it simplified our work in showing
those other laws. Now we learn it could have been deduced from them if
we had derived them first. The point is, Exercise 8.7.3 is true in any field
or integral domain, but actually showing something is a field or integral
domain may require detours.

The additive identity, 0, is defined by its behavior under addition; inter-
estingly enough, that determines how it behaves under multiplication as
well.

Theorem 8.7.5 In any field or integral domain, x · 0 = 0.

Proof Using the distributive law, and the fact that 0 is the additive iden-
tity,

(x · 0) + 0 = x · 0
= x · (0 + 0)
= (x · 0) + (x · 0)

Then by the cancellation law, 0 = x · 0.

Further, −x is specified by its additive behavior, but it too has a well
defined multiplicative role, which we leave to you in Exercise 8.7.4.

Definition 8.7.6 x− y = x+ (−y).

We leave the properties of subtraction to you as well.
The next axiom is a non-triviality axiom. There are many fields and

integral domains besides the signed numbers. The purpose of Axiom 8 is
to rule out of consideration very degenerate systems.

Axiom 8 F has more than one member.

Now, finally, fields and integral domains go their separate ways. For ra-
tionals and for reals, exact division is always possible, except by 0. That is,
every non-zero number has its multiplicative inverse. In the whole number
system this is not the case. Still, in the whole number system we do have a
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cancellation law for multiplication, which carries over to signed whole num-
bers as well. This allows us to do certain things that we would probably
use multiplicative inverses for, if we had them.

The final axiom is stated in two versions, one for fields and one for
integral domains.

Field Axiom 9 (Multiplicative inverse) For every x in F other than
0 there is some y in F such that x · y = 1.

Integral Domain Axiom (Cancellation law) For every z in F other
than 0, if x · z = y · z then x = y.

An integral domain is a system satisfying the eight common axioms and
the Cancellation law. A field is a system satisfying the eight common ax-
ioms and the Multiplicative inverse condition. Note that the signed whole
numbers constitute an integral domain, and the signed rationals and signed
reals are fields.

Definition 8.7.7 In a field, if x 6= 0, by x−1 we mean the unique multi-
plicative inverse of x.

Definition 8.7.8 In a field, if y 6= 0, xy = x · y−1.

Exercises

Exercise 8.7.1 Show that in any field or integral domain, x·[(y+z)+w] =
(x · y + x · z) + x · w.

Exercise 8.7.2 Show that in any field or integral domain there is only one
multiplicative identity.

Exercise 8.7.3 Show that in any field or integral domain, −(x + y) =
(−x) + (−y).

Exercise 8.7.4 Show that in any field or integral domain,

1. x · (−y) = −(x · y)

2. (−x) · y = −(x · y)

3. (−x) · (−y) = x · y.

Exercise 8.7.5 Show that in any field or integral domain,−(x−y) = y−x.

Exercise 8.7.6 Show that in any field or integral domain, x · (y − z) =
x · y − x · z.

Exercise 8.7.7 Show all parts of Exercise 8.5.2 hold in any field or integral
domain.

Exercise 8.7.8 Show that in any field or integral domain, 0 6= 1.
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Exercise 8.7.9 Show that a cancellation law for multiplication holds in
every field. Thus every field is also an integral domain.

Exercise 8.7.10 Show the restriction “other than 0” in the two versions
of Axiom 9 is necessary. Hint: show that if it were dropped, Axiom 8 would
be violated.

Exercise 8.7.11 Show that in any integral domain, if x ·y = 0 then x = 0
or y = 0.

Exercise 8.7.12 Show that in any field, members have unique multiplica-
tive inverses.

Exercise 8.7.13 Show that in any field, if x 6= 0, x = (x−1)−1.

Exercise 8.7.14 Show that in any field, if x 6= 0 and y 6= 0, then (x·y)−1 =
(x−1) · (y−1).

Exercise 8.7.15 Show that in any field, if b 6= 0 and d 6= 0:

1. a
b = c

d if and only if a · d = b · c;

2. a
b = a·d

b·d ;

3. a
b + c

d = a·d+b·c
b·d ;

4. a
b · cd = a·c

b·d .

8.8 An order relation for signed numbers

Producing a satisfactory notion of order is easy. We want x > y to be
true if the passage from y to x is an increase. But, by our discussion of
subtraction, x− y is what will get us from y to x.

Definition 8.8.1 x > y if x− y is positive.

On the surface, it looks like our definition of > for signed numbers makes
no use of the notion of > for unsigned numbers, which we developed at great
length in earlier chapters. In fact, this is not the case, though the connection
is a hidden one. In order to decide if x > y, we must compute x−y, that is,
x+(−y). Now in order to add signed numbers, if the signs are different, the
result gets the sign of the larger unsigned number involved. This means, in
order to decide if x > y is true, we need to be able to compare unsigned
numbers. In fact, none of our earlier development will be wasted.

Rather than continuing the discussion in its present setting, we go back
to fields and integral domains for a more general treatment, having signed
numbers as examples.
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Exercises

Exercise 8.8.1 Show that unsigned numbers and positive numbers act
alike with respect to order. That is, temporarily resuming our old notation,
IX > IY in the present sense if and only if X > Y in the sense of earlier
chapters.

8.9 Ordered fields and integral domains

Suppose F is a field or an integral domain using the operations + and ·.
F is said to be ordered if there is a subset P of F (intuitively the positive
members of F) meeting the following three conditions.

Order axiom 1 P is closed under +.

Order axiom 2 P is closed under ·.

Order axiom 3 For every x in F , exactly one of the following holds: x is
in P, x is 0, −x is in P.

It should be clear that the signed numbers are ordered (taking P to be
the positive numbers) so anything true of ordered systems in general is true
of the signed numbers. In any ordered field or integral domain we will use
the language x is positive to mean x is in P.

Definition 8.9.1 x > y if x− y ∈ P.

Now the basic properties of > follow rather easily. All the following takes
place in an ordered field or integral domain.

Theorem 8.9.2 (Transitivity) If x > y and y > z then x > z.

Proof Suppose x > y and y > z. Then, by definition, x − y ∈ P and
y − z ∈ P. But P is closed under + so (x − y) + (y − z) ∈ P, that is,
x− z ∈ P. Hence x > z.

This illustrates how things often are proved in ordered fields and integral
domains. Translate away all occurrences of >, then use the axioms. Indeed
we leave the basic properties as exercises. The first several will not need
Order Axiom 3. It is assumed in the exercises that we are in an ordered
field or integral domain.

Theorem 8.9.3 If a 6= 0, a2 is positive (we are writing a2 for a · a).

Proof By Order Axiom 3, since a 6= 0, either a ∈ P or −a ∈ P.
Case 1) a ∈ P. Then since P is closed under multiplication, a · a ∈ P.
Case 2) −a ∈ P. Then again, since P is closed under multiplication,

(−a) · (−a) ∈ P. But by Exercise 8.7.4, (−a) · (−a) = a · a, so a · a ∈ P.
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Corollary 8.9.4 1 is positive.

Proof 1 6= 0 and 1 = 12.

Corollary 8.9.5 1 > 0.

Definition 8.9.6

1. x ≥ y means x > y or x = y;

2. x < y means y > x;

3. x ≤ y means x < y or x = y.

All the standard properties of these notions are simple consequences of
what we have just done. We do not state them since they are rather tedious.

Not every field is an ordered field. For instance, no finite field (and there
are many such things) is an ordered field. This is a consequence of Exer-
cise 8.9.14. Further, the complex numbers, though they are a field, are not
an ordered field. We do not develop the properties of the complex numbers
in this book. But if you are familiar with them, the following argument
shows they do not constitute an ordered field.

We have shown: 1) in any ordered field, 1 is positive; and 2) in any
ordered field, if a 6= 0, a2 is positive, hence i2 = −1 would have to be
positive. These two items contradict our third order axiom.

Both the signed reals and the signed rationals are ordered fields, however,
and there are other examples as well.

Exercises

Exercise 8.9.1 Show x > y if and only if a+ x > a+ y.

Exercise 8.9.2 Show if x > y and a > b then x+ a > y + b.

Exercise 8.9.3 Show a is positive if and only if a > 0.

Exercise 8.9.4 Show, if x > y and a > 0 then a · x > a · y.

Exercise 8.9.5 Show x > y if and only if −y > −x.

Exercise 8.9.6 (Trichotomy) Show that for any x and y, exactly one of
the following is true: x > y, x = y, y > x.

Exercise 8.9.7 Show that in an ordered field, if a is positive, it has a
multiplicative inverse.

Exercise 8.9.8 Show that in an ordered field, if a is positive so is a−1.

Exercise 8.9.9 Show that if a > 0, x > y if and only if a · x > a · y.
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Exercise 8.9.10 Show a < 0 if and only if −a > 0.

Exercise 8.9.11 Show:

1. if a > 0 and b < 0 then a · b < 0;

2. if a < 0 and b < 0 then a · b > 0.

Exercise 8.9.12 Show that between any two members of an ordered field
there is another. Explicitly, show if a > b then a > a+b

1+1 > b.

Exercise 8.9.13 Show that between any two members of an ordered field
there are infinitely many others.

Exercise 8.9.14 Show that, in any ordered field, 1, 1 + 1, 1 + 1 + 1, 1 +
1 + 1 + 1, etc. are all different. Hint: 1 > 0. (Similarly for ordered integral
domains.)

8.10 The least upper bound property for signed
reals

In this section we return to the specific ordered field of signed reals, and
we show an analog of the Least Upper Bound Theorem 7.9.7.

Definition 8.10.1 Let C be a non-empty collection of signed reals.

1. u is an upper bound for C if, for each x ∈ C, u ≥ x.

2. u is a least upper bound for C if it is an upper bound, but smaller
than any other upper bound.

The notion of least upper bound should not be confused with that of
largest. x is the largest member of C if x ∈ C and x is bigger than any
other member of C. In a similar way we may define the notion of smallest
member of C. Now, the least upper bound of C (if it exists) is the smallest
of the upper bounds for C. It need not be the largest member of C, since it
need not even be a member of C. However, see Exercise 8.10.2.

We now proceed to establish a Least Upper Bound Theorem for the
signed reals by, successively: getting it for sets of positive reals, mixed sets
of positive and negative reals, and finally arbitrary sets of signed reals.
The basic ideas are: first, positive reals act like unsigned reals, and second,
negative reals become positive by ‘translating them to the right’.

First we show the notion of least upper bound for unsigned reals agrees
with the present one for positive reals. That is, temporarily resuming our
surpressed notation,
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Lemma 8.10.2 Let C be a set of unsigned reals, and let CI be the corre-
sponding set of positive reals. That is, IX ∈ CI if and only if X ∈ C. Then
U is the least upper bound of C if and only if IU is the least upper bound
of CI .

Proof This follows immediately from two facts:
1) the notions of least upper bound are defined entirely in terms of >

and
2) by Exercise 8.8.1, > for unsigned reals and > for positive signed reals

agree.

Corollary 8.10.3 If C is a non-empty set of positive reals, bounded from
above, then C has a least upper bound.

Proof Since we have a least upper bound theorem for unsigned reals.

Theorem 8.10.4 (Least Upper Bound Theorem)
Any non-empty set of signed reals which has an upper bound has a least
upper bound.

Proof Let C be a non-empty set of signed reals having an upper bound.
Choose any member m of C, and choose any signed real b < m.

Form the collection C + (−b) as defined in Exercise 8.10.5. By part 1 of
that exercise, since C has an upper bound, so does C + (−b). Also C + (−b)
has some positive members since m+ (−b) is in it and m+ (−b) > 0 since
m > b.

Then by the corollary, the positive part of C + (−b) has a least upper
bound, and by Exercise 8.10.4, this must be a least upper bound for the
entire of C + (−b). Finally, Exercise 8.10.5 part 2 gives us that C itself has
a least upper bound. This concludes the proof.

There is a ‘dual’ version of this which we can get easily now. We leave it
to you as Exercise 8.10.7.

Definition 8.10.5 Let C be a non-empty collection of signed reals.

1. b is a lower bound for C if, for each x ∈ C, b ≤ x.

2. b is a greatest lower bound for C if b is a lower bound, but bigger than
any other lower bound.

Exercises

Exercise 8.10.1 Show that if C has a least upper bound, it has only one.

Exercise 8.10.2 Show that if C has a largest member, it is the least upper
bound of C.
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Exercise 8.10.3 Find a set C of signed reals which has a least upper bound
but does not have a largest member.

Exercise 8.10.4 Let C be a set of signed reals, some of which are positive.
Let C+ be the set of positive reals in C and Co be the rest of C. Show that
if u is the least upper bound for C+, it is also the least upper bound for
the entire collection C.
Exercise 8.10.5 Let C be a non-empty collection of signed reals, and let
C+a be the collection which results when a is added to each member of C.
That is, C + a = {x+ a | x ∈ C}. Show:

1. u is an upper bound for C if and only if u+ a is an upper bound for
C + a;

2. u is the least upper bound for C if and only if u+a is the least upper
bound for C + a.

Exercise 8.10.6 Show that C can not have more than one greatest lower
bound.

Exercise 8.10.7 Show that any non-empty set of signed reals which has
a lower bound has a greatest lower bound.

8.11 Complete ordered fields

Suppose F is an ordered field. It is called complete if any non-empty set
of members of F which has an upper bound has a least upper bound.
In Section 10 we showed the signed reals were complete. The remarkable
fact is that, essentially, there is only one complete ordered field. Any two
are intertranslatable. Thus the approach we followed in developing real
numbers, using infinite decimals, and any of the other approaches that are
commonly used all lead to essentially the same end. This makes possible
an elegant characterization of the signed real number system: it is ‘the’
complete ordered field. These days many books on mathematical analysis
start with this as a definition. The only difficulty with this approach is that
it does not establish that signed reals exist, it only says how they behave,
assuming their existence. In fact, the entire of this book may be looked at
as a proof of the following.

Theorem 8.11.1 Given the assumptions made in the course of this book,
a complete ordered field exists.

This is far enough for this book to go. To continue from here, consult
any book on Modern Algebra for the further development of fields, and for
exactly what intertranslatable means (the technical term is isomorphic).
Also consult any book on Analysis for the further development of the real
number system itself.
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“. . . of making many books there is no end; and much study is a
weariness of the flesh.”

Ecclestiastes
Ch 12 verse 12

The Bible

“We are like a stray line of a poem, which ever feels that it rhymes
with another line and must find it, or miss its own fulfillment. This
quest of the unattained is the great impulse in man which brings
forth all his best creations. . . .”

Thought Relics
Tagore


