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A. Tabular Positionality

 

1   A revolution in logic?

 

Forget about the tedious problems of combinatorial analysis of place-valued logics.
What is the real impact? And why is it so difficult to understand it?

It is very difficult to understand Gunther’s approach because of endless confusions
of it with other scientific trends, like many-valuedness, dialectics, deviant logics, etc.

The conceptual approach of place-valued logics is easy to understand, but nearly
impossible to be accepted by mathematicians, philosophers and logicians.

In a subversive step of arithmetizing logic and logifying arithmetic, Gunther revolu-
tionized the old Chinese/Indian concept of Zero and positionality to a mechanism of
distribution and mediation of logical systems, and later of formal systems in general.

As we know, without the positionality system and its cipher Zero the whole Western
science, technology and business wouldn’t exist. On the other hand, without Western
alphabetism the modern positional numeration (the zero and the place-value system)
couldn’t have such a historic impact on technology and society in general.

 

"Therefore, albeit the Hindus perfected one of the greatest discoveries in human history --
the zero, they could not realize its cosmic function as a mathematical tool of science."

 

Gunther’s approach is unseen subversivity! Never happend in the last 5000 years.
A concept, valuable inside a theory, i.e., in arithmetic is used/abused to place full

logical theories in a distribution instead of numeral in a positional arithmetic. The part
is treated as a whole and moved from arithmetic to the logical sphere.

Forget about the tedious problems of combinatorial analysis of place-valued logics
and all the ambitious philosophical interpretations.

 What is the real impact of Gunther’s approach? And why is it so difficult to under-
stand? What was the crazyness that Rowena Swanson was so much intrigued? 
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Linear positionality

 

In his paper 

 

"Die Aris-
totelische Logik des
Seins und die nicht-
Aritotelische Logik
der  Reflex ion"

 

,
Gunther has given an
exposition of the re-
sults of his research
about a logic of re-
flection in such a con-
cise and clear way
that it is nearly impos-
sible to no to under-
stand his approach.
But this exactly was
the obstacle. How
can we mix logic with
the positional system
of arithmetic? 
And how can we
succed, later, from lin-
earity to tabularity of
a kenogrammatic po-
sitionality system?

 

Place-valued logics around Cybernetic Ontology, the BCL and AFOSR
http://www.thinkartlab.com/pkl/lola/AFOSR-Place-Valued-Logic.pdf

 

"Theoretical logic despite all of its recent advances is fundamentally still in the state
which can be compared to that of mathematics at the time of the Greeks and Romans.

We have not yet adopted the idea of a place-value system all logical patterns our
consciousness is capable of."

 

G. Gunther, Some remarks on many-valued logic, In: Lawrence J. Fogel, On the de-
sign of conscious automata, 1966, San Diego

http://www.thinkartlab.com/pkl/lola/AFOSR-Place-Valued-Logic.pdf
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The concept of zero was conceived by the Chinese then improved on by Hindus 

 

http://www.joernluetjens.de/sammlungen/abakus/abakus-en.htm

  "They [the Chinese] then invented symbols for the content of each column to replace draw-
ing a picture of the number of beads. Having developed symbols to express the content of
each column, they had to invent a symbol for the numberless content of the empty column -
- that symbol came to be known to the Hindus as "sunya", and sunya later became "sifr" in
Arabic; "cifra" in Roman; and finally "cipher" in English.
 
 Only an empty column of an abacus could possibly provide the human experience that
called for the invention of the zero -- the symbol for "nothingness", and that discovery of the
symbol for nothingness had an enormous significance upon subsequent humanity." 
h t tp ://www.gupshop.com/pr in t -
view.php?t=2132&start=0&sid=1beb2b527b74aed4b36849721179c42b

 

A better understanding of Gunther’s approach can be found in the fact of Gunther’s
early studies of Sanskrit and Chinese. I propose that it had a much more profound in-
fluence on his "unconscious" writing than anything consciously declared as Hegelian.
Also an expert in German idealism, his interpretation of Hegel’s Logik as a positional
system of thought was in fact a departure from traditional Western philosophy.

As a consequence Gunther had to invent a new kind of zero, a proto-zero, able to
distribute formal systems with their internal concept of zero and linearity over a tabular
matrix opening up the way from the Abacus to trans-computation.

 

More at: http://www.thinkartlab.com/CCR/rudys-chinese-challenge.html

http://www.joernluetjens.de/sammlungen/abakus/abakus-en.htm
http://www.gupshop.com/print-view
http://www.thinkartlab.com/CCR/rudys-chinese-challenge.html


 

Algorist versus Abacist

 

http://library.thinkquest.org/22584/emh1100.htm

 

Are we not in a similar situation today? After the decline of the paradigm of al-
gorithmic programming a new round has to be opened with "

 

interactionists

 

".
Interactionality, reflectionality and complexity of computation managed by the

impotent and chaotic methods based on linear arithmetic and bivalent logic? The
un-denied success of this paradigm is based on a self-destroying exploitation of
natural and human resources. Not long ago, Medieval European scientists and
mathematicians had been victims of their dysfunctional methods based on a Chris-
tian refutation of the Arabic positionality system.

Keith J Devlin: 

 

"In the twenty-first century, biology and the human sciences will become the primary
driving forces for the development and application of new mathematics. So far, we
have seen some applications of mathematics in these fields, some quite substantial. But
that has involved old mathematics, developed for other purposes. What we have not
yet seen to any great extent are new mathematics and new branches of mathematics
developed specifically in response to the needs of those disciplines. In my view, that is
where we will see much of the mathematical action in the coming decades. I suspect
that some of that new mathematics will look quite different from most of today’s math-
ematics. But I really don’t have much idea what it will look like."
http://www.spiked-online.com/index.php?/surveys/2024_article/1310/

http://library.thinkquest.org/22584/emh1100.htm
http://www.spiked-online.com/index.php?/surveys/2024_article/1310/
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2   Historical background of positionality and the Abacus

 

 In Sanskrit (the scholarly language of the Hindus), the word for the zero is "sunya", mean-
ing "void", and there is little doubt that the zero concept originated as the written symbol
for the empty column of the abacus. The abacus had been used around the world since an-
tiquity to provide a facile means of accumulating progressive products of multiplication by
moving those products ever further leftward, column by column, as the operator filled the
available bead spaces one by one and moved the excess over ten into the successive right-
to-left-ward columns.

http://www.neo-tech.com/zero/part6.html

Some authorities believe that positional arithmetic began with the wide use of the abacus
in China. The earliest written positional records seem to be tallies of abacus results in China
around 400. In particular, zero was correctly described by Chinese mathematicians around
932, and seems to have originated as a circle of a place empty of beads.

In India, recognizably modern positional numeral systems passed to the Arabs probably
along with astronomical tables, were brought to Baghdad by an Indian ambassador around
773.

http://en.wikipedia.org/wiki/Numeral_system

The first place-valued numerical system, in which both digit and position within the num-
ber determine value, and the abacus, which was the first actual calculating mechanism, are
believed to have been invented by the Babylonians sometime between 3000 and 500 BC.
Their number system is believed to have been developed based on astrological observa-
tions. It was a sexagesimal (base-60) system, which had the advantage of being wholly di-
visible by 2, 3, 4, 5, 6, 10, 15, 20 and 30. The first abacus was likely a stone covered with
sand on which pebbles were moved across lines drawn in the sand. Later improvements
were constructed from wood frames with either thin sticks or a tether material on which clay
beads or pebbles were threaded. 

Sometime between 200 BC the 14th century, the Chinese invented a more advanced
abacus device. The typical Chinese swanpan (abacus) is approximately eight inches tall and
of various widths and typically has more than seven rods, which hold beads usually made
from hardwood. 

This device works as a 5-2-5-2 based number system, which is similar to the decimal sys-
tem. Advanced swanpan techniques are not limited to simple addition and subtraction. Mul-
tiplication, division, square roots and cube roots can be calculated very efficiently. A
variation of this devise is still in use by shopkeepers in various Asian countries. 

There is direct evidence that the Chinese were using a positional number system by 1300
BC and were using a zero valued digit by 800 AD.

http://astro.temple.edu/~joejupin/SynergyManual2.pdf

 

The void is empty but the emptiness is not void. That’s the difference!
For the first time since well 5000 years we have good reasons to state: the emptiness

is not empty at all.

http://www.neo-tech.com/zero/part6.html
http://en.wikipedia.org/wiki/Numeral_system
http://astro.temple.edu/~joejupin/SynergyManual2.pdf
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3   General positional matrix

 

The leading intuition behind the positional matrix is not in any sense based on lin-
guistic, logical and cognitive science notions.

The position taken risks to think outside the paradigm of sentences, statements, prop-
ositions and also outside of notions, names, indentifiers.

Thus, logic of any kind is not leading the adventure.
The positional matrix is opting for positionality. It is believed that scientific rationality

as codified by logic and math is occupying one and only one position in the world
game.

The difficulty of introducing the positional matrix is not only its rejection of logos-
based notions but also its insistence to reject topological concepts in the sense of math-
ematical topology and topos theory in the category theoretical and the philosophical
sense. In fact, the positional matrix is not a mathematical concept.

So, nearly nothing is left to explain the positional matrix.

Obviously, there is no single PM and PM is not taking place in a field of possibilities.

A first step into the idea of positionality is given by Gotthard Gunther’s theory of sub-
jectivity. The distinction of an irreducible difference of I-subjectivity and Thou-subjectiv-
ity needs a structural space to distribute the domains of this difference. As a further
consequence, Gunther introduced the idea and formalism of a 

 

place-valued

 

 logic.
Here again, places, loci are fundamental. Further studies and attempts to formalize this
idea of distributed rationality led him to discover kenogrammatics. Kenogrammatics
are offering a grid for the distribution of a multitude of contextures.

Loci have to be understood in a most fundamental sense as empty. The voidness of
their emptiness is beyond any logical, numeric and ontological notions of nothingness.

Philosophy, Occidental as well Oriental, knows emptiness only as an unstructured
singularity. The West is identifying emptiness with nothingness. Thus, treating nothing-
ness as an opposite to Being. The east is more radical in taking nothingness serious.
But, like in the West (Parmenides about nothingness), there is nothing to say about the
sunyata of emptiness. Happily enough, the Indian thinkers and mathematicians con-
ceptualized sunyata as the arithmetical 

 

zero

 

. Bramagupta (598-670) had the inge-
nious definition of zero: a number minus itself is zero. 

But the concept zero is not identical with the concept of positionality. Both are in
some sense complementary. The position system is a technique, a mechanism to orga-
nize numbers. The zero is a special "entity" to realize this organizational structure with
great efficiency.

 

"In around 500AD Aryabhata devised a number system which has no zero yet was a
positional system. He used the word "kha" for position and it would be used later as the
name for zero."  

 

http://turnbull.mcs.st-and.ac.uk/~history/HistTopics/Zero.html#s31

 

Even today there are all kinds of speculations and confusions about zero and posi-
tionality. At least since Alain Badiou’s paper, the situation should be cleared.

http://turnbull.mcs.st-and.ac.uk/~history/HistTopics/Zero.html#s31
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I’m not aware about similar speculations about "zero" by Chinese thinkers. It is said
that Chinese thinkers didn’t develop abstractions in the Indic or Western sense. But the
Chinese use of zero is highly technical: it is fundamental to the first hand-driven com-
puter, the Abacus. Thus, the Chinese understanding of zero is in this context not spec-
ulative but mathematical, numeric and realized in a computational devise. Indian
speculations are highly introspective, meditative and leading to inner insights not ac-
cessible to any mundane mechanism.

The positional matrix is only a part of the general theory of kenogrammatics but of-
fers a more direct approach to a formal study of disseminated contextures, logical and
semiotical.

Kenos (greek, empty) is empty but rejects any multitude. Kenograms are inscriptions
of multitudes of empty places. Kenogrammatics is opening up the game of kenomic
emptiness and the grammar of its inscription. 

The decision for the positional matrix is linking this highly sophisticated speculations
back or forwards to accessible formalisms.

 

Morphograms are beyond language

 

Polycontextural logics are logifications of morphogrammatics. This is not only be
done by logical interpretations, say with truth-values of dialog-rules, but also by intro-
ducing sentential, i.e., propositional terms.

Technically, in the process of logification the morphograms get framed by proposi-
tional variables, connectors and interpreted by logical truth-values or equivalents.

Morphograms are linguistic-free; neither names nor sentences are involved.
Also morphograms are stripped off of any propositional attributes they are not some-

thing totally strange to anything logical. As Emil Lask would say, they perform the na-
kedness of logic.

 

Names vs. sentences

 

Chinese thinking is not sentence based. But it is also not name-based. What is a
name if not in a sentence? Are there in a natural way sentence-free names? Names are
part of sentences. What can be changed is the focus. We can emphasize names and
treating sentences or propositions as names. Or we focus on sentences with their pos-
sible truth-values, i.e., their semantic and ontological function of mirroring or modeling
reality. Mostly, all kind of sentences, commands, questions, imperatives, are modeled
along the model of statements. To clear this kind confusions, analytic philosophy and
the linguistic turn did some work, and produced some new confusions.

 

Rectifying names

 

[...] that Chinese philosophical speculation tends to be guided more by considering of
the 

 

effect

 

 of some doctrine on human behavior than on its empirical justification or "truth."
[...] the role of language (and mind) to be predominantly 

 

action guiding.

 

http://www.hku.hk/philodep/ch/Metaphysics%20of%20Dao%20doc.htm

ConTeXtures. Programming Dynamic Complexity 
http://www.thinkartlab.com/pkl/lola/ConTeXtures.pdf

http://www.hku.hk/philodep/ch/Metaphysics%20of%20Dao%20doc.htm
http://www.thinkartlab.com/pkl/lola/ConTeXtures.pdf


 

Operative or "elevator" terms used in morphogrammatics

 

Opposites

 

:
statement, proposition, sentence, name, noun, notion
logical value, truth, consequence, deduction, proof
binary tree, hierarchy
number, zero

 

Elevators

 

:
grid, matrix, locus, space, position, 
place-designator
distribution, mediation
transformations

In a critical and reflexive treatment, elevator terms are not used dogmatically or
unconsciously but are involved in explanations, constructions and even (circular)
definitions. The matrix approach goes back to my paper 

 

Deskriptive Morphogram-
matik 

 

(1974) and was then called O-Matrizen-Theorie in contrast to the Q-Matri-
zen-Theorie which was the genuine approach for morphogrammatics.

 

Reductions of complexity and complication

 

Reductions on the complexity of the positional matrix are possible and usual. Not
all sub-system of the computing system has to have the ability to reflect all its neigh-
bor systems into its own system. Neither is it necessary that all sub-systems are able
to interact with all its neighbor systems. In a pragmatical context the system has to
decide which properties are necessary.

Under the hegemony of 2-valued logic, every distinction is discrimination.
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3.1 A numeric place-designator for numeric systems

 

A kenomic sequence like (000121121) can be seen as a doublet of a head and a
body. The head, say (000), is marking the place where the body as a 0/1-sequence
is located. It is called the 

 

place-designator

 

 (Gunther 1969). The relation between head
and body is dynamic and depends on interpretation. Hence, the head of the sequence
could also be (00) or (0001) instead of (000).

This understanding of the concept "place-designator’ as constructed by the dynamics
of the head/body difference of the numeric keno-sequence itself is not fully identical
with the introduction of the place-designator by Gunther as the following citation may
show. There, the natural numbers in trans-classic systems are localized by a place-des-
ignator and not their kenomic base.

 

"The adding of a place-designator is not required in classic mathematics, because the
natural numbers it employs are, logically speaking, always written against this backdrop of
a potential infinity of zeros. In other words, the logical place of the traditional Peano num-
bers cannot change, since they appear only in one ontological locus.

The situation is different in a trans-classic system. In this new dimension classic logic un-
folds itself into an infinity of two-valued sub-systems, all claiming their own Peano sequences.
It follows that natural numbers – running concurrently in many ontological loci – must then
be written against an infinity of potential backdrops." Gunther, p. 21

http://www.vordenker.de/ggphilosophy/gg_natural-numbers.pdf

"In other words: a trito-number is no trito-number, unless it occupies a well defined place
in a pattern of zeros." Gunther 1969

 

But things are much more dialectic than this. In the published work of Gunther only
the very essentials are given and this in a highly abbreviated version. There is more to
learn about the place-designator in the proposal from 1969 to Rowena Swanson from
AFOSR. A "backdrop" may not only consist of a 

 

"potential infinity of zeros"

 

 but of all
sorts of numeric constellations.

It seems to be clear that the place-designator is a further step in the realization of a
new position system, not for numbers but for number systems. Hence, the positional
function of the marker zero in a numeric position system is only a very first step to a
fully developed reflectional and interactional position system.

To mark the place of the occurrence of a number in a kenomic texture, a place-des-
ignator has to be marked.

It follows, that the place-designator is also placing the place where a counting pro-
cess might start.

Gaps, jumps (saltations) and place-designation (place-designator) connected with
the successor operation are of fundamental relevance for polycontextural arithmetic. 

Gaps, jumps (saltationss) and places are defining a system of constituents for the def-
inition of the trans-classic concept of numbers. 

The signature, i.e., the fundamental alphabet of polycontextural arithmetic consists
of three very different categories of signs or marks: 

 

number

 

 signs (markers), 

 

empty

 

signs (markers) and 

 

gap

 

 signs (markers) for each contexture.

http://www.vordenker.de/ggphilosophy/gg_natural-numbers.pdf
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4   Philosophical remarks about positionality and loci

 

The following philosophical remarks are in German language, writen in the early
90s. I don’t see how I could translate them into a reasonable English. Polycontexturality
also means the acceptance of different languages and the profound dis-contexturality
between them.

 

4.1  Die Orte Ludwig Wittgensteins

 

Der Ort, bzw. der logische Ort, hat von jeher in der Logik eine Bedeutung gehabt und
für eine gewisse Unruhe des Denkens gesorgt. Beim Aufbau der klassischen Logik, die wir
zu verlassen versuchen, heißt es – chronologisch geordnet –:

 

„1.11.1914 Der Satz muß einen logischen Ort bestimmen. 
7.11.1914 Der räumliche und der logische Ort stimmen darin überein, daß beide die

Möglichkeit einer Existenz sind.
18.11.1914 Es handelt sich da immer nur um die Existenz des logischen Orts. Was –

zum Teufel ist aber dieser ’logische Ort’!?“. 

 

(Ludwig Wittgenstein)
 Die logischen Orte Wittgensteins sind durch die Koordinaten der logischen Variablen

und die Wahrheitswertverteilung bestimmt. Der logische Ort eines Satzes kann einen Punkt,
einen Teilraum oder auch den ganzen logische Raum einnehmen. Die logischen Orte bilden
die Möglichkeit für die Existenz von Welten. Die Orte sind nur bzgl. ihrer Indizes vonein-
ander verschieden, sie sind die Orte eines und nur eines logischen Zusammenhanges. Ihre
Logik begründende Extensionalität und Monokontexturalität unterscheidet sie entschieden
von den qualitativen Orten der antiken Gedächtniskunst, der Mnemotechnik. Ausserhalb des
logischen Raumes gilt keine Rationalität; einzig das Schweigen als lautloses Verstummen. 

Die Orte Wittgensteins, heute noch Leitidee der KI–Forschung, insb. der logischen Pro-
grammierung, pflegen keine Verwandtschaft mit einer 

 

„Architektur, die weder einschließt,
noch aussperrt, weder abdichtet noch untersagt.“

 

 (Eva Meyer)

 

4.2 Orte und Polykontexturalität

 

Die Orte der Polykontexturaltät sind von denen Wittgensteins prinzipiell verschieden. Um
das Bild des Koordinatensystems zu benutzen, in das nach Wittgenstein alle Elementarsätze
der Welt und alle logischen Zusammenhänge zwischen ihnen, also die ganze Welt, abge-
bildet werden kann, wäre ein Ort einer Elementar–Kontextur der Nullpunkt des Koordinat-
ensystems und die Polykontexturalität wäre über eine Vielheit solcher Nullpunkte und damit
über einer Vielheit von Koordinatensystemen verteilt. 

Wenn also die ganze (Leibniz–Wittgensteinsche) Welt in einem und nur einem Koordi-
natensystem abbildbar ist, so ist in ihrem Nullpunkt nichts abbildbar. Denn sowohl die Vari-
ablen für Elementarsätze, die Wahrheitswertverteilung, wie die Wahrheitswertfunktion des
Zusammenhangs der Elementarsätze, fehlen an einem solchen Nullpunkt. Dieser Nullpunkt
ist die Metapher für einen logisch–strukturellen Ort im Sinne der Kontexturalitätstheorie und
der Kenogrammatik. Dieser Ort ist gewiss ohne Eigenschaften, ja er steht ausserhalb der
Möglichkeit Eigenschaften zu haben und dennoch ist er der Ermöglichungsgrund aller mögli-
cher logischer Sätze. 

In der Kenogrammatik wird eine Vielheit von verschiedenen Orten dieser Eigen-
schaftslosigkeit unterschieden. Aber hier endet der intra–metaphorische Gebrauch des
Nullpunkts; ein Kenogramm markiert gewiß keinen Nullpunkt eines Systems von Koordinat-
en jedweder Art, sondern eher den Ort, den ein solcher Nullpunkt einnehmen könnte und
verweist auf Emil Lask und das 'logisch Nackte'.

Die Polykontexturalitätstheorie wäre hier in Zusammenhang zu bringen mit der Vielheit
der Wittgensteinschen Sprachspiele. Nur daß sie versucht, die Operativität des Kalküls in
die Verstricktheit der Sprachspiele herüber zu retten. Was allerdings nur unter Hintergehung
des common sense der Umgangssprache gelingen kann. Nicht die Unterscheidung Kalkül/
Sprachspiel sollte hier leiten, sondern die Dekonstruktion der Hierarchien zwischen den
beiden Konzeptionen bzw. Spielen und auch zwischen künstlichen und natürlichen
Sprachen und Notationssystemen. 
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4.3 Genealogie, De-Sedimentierung und die Vier

 

Das Hauptproblem einer transklassischen und polykontexturalen Logik bzw. Kalkültheorie
ist nicht so sehr die Einführung von neuen Werten oder neuartigen Funktionen, sondern die
entschiedene Entledigung jeglicher Genealogie. Genealogie ist immer Herrschaft des
Grundes über das Begründete, Verdekkung von Kalkül und Ermöglichungsgrund des
Kalküls. Diese Sedimentierung ist es, die ent–deckt und entkoppelt werden muß. 

Ohne diese Dekonstruktion des Grundes erklingt erneut das Lied von der nie versiegend-
en Quelle, diesmal von der 'Santa Cruz Triune': 

 

„The void is the 'allowingness' prior to dis-
tinction; it can be viewed as the source from which forms arise, as well as the foundation
within forms abide. To the extend that indicational space may be represented by a topolog-
ical space, the void may be represented by an undifferentiated (homogeneus, isotropic and
uniform) space that prevades all forms.“

 

 (C. G. Berkowitz, 1988) 
Eine Desedimentierung und Hineinnahme der begründendenden begrifflichen Instrumen-

tarien in den Formalismus des Kalküls selbst, würde dem CI jene Operativität ermöglichen,
die er für eine Kalkülisierung von doppelter Form, d.h. der Formation der Form, bzw. der
Reflexionsform, benötigte. Dies würde aber die Simplizität sowohl seiner Grundannahmen
wie auch seiner Architektur sprengen. 

Erst wenn Grund und Begründetes als gleichursprüngliche Elemente eines komplexen
Wechselspiels verstanden werden können, ist die Herrschaft des Grundes, die Genealogie,
gebrochen und eine vom Grund losgelöste und damit autonome Realisation möglich. Eine
solche Loslösung ist keine Negation des Grundes, sondern zieht den Prozeß des Negierens
mit in die Loslösung ein.

In einem von der Herrschaft der Genealogie befreiten Kalkül wie der Kenogrammatik gibt
es jedoch keinen ausgezeichneten Ort der Begründung. Was Grund und was Begründetes
ist, wird geregelt durch den Standort der Begründung. Der Wechsel des Standortes regelt
den Umtausch von Grund und Begründetem. Jeder Ort der Begründung ist in diesem
Fundierungsspiel Grund und Begründetes zugleich. Orte sind untereinander weder gleich
noch verschieden; sie sind in ihrer Vielheit voneinander geschieden. 

Die Ortschaft der Orte ist bar jeglicher Bestimmbarkeit. Orte eröffnen als eine Vierheit
von Orten das Spiel der Begründung der Orte.

Kaehr, Disseminatorik: Zur Logik Der ’Second-Order Cybernetics’ in: 
      http://www.thinkartlab.com/pkl/media/DISSEM-final.pdf

http://www.thinkartlab.com/pkl/media/DISSEM-final.pdf


 

5   A little typology of interpretations of writing

 

Western Phonologism of Writing

 

This is the scheme of a logocentric understanding of writing. It corresponds to
the dominant tradition of Western philosophy and linguistics. But there are now
surprises to observe that this scheme holds in a similar way in other cultures, too.

 

Grammatology of Chinese Writing

 

This scheme corresponds to the Chinese understanding of writing as it is ex-
posed by Liu Hsieh. There are similarities in the pre-Aristotelian tradition of Plato
and Pythagoras to find. It is not my aim to go into history, say of the Sumerian un-
derstanding of language as it is to discover in the Epic of Gilgamesh (2700 B.C.).

 

Graphematics of Chinese Writing

 

This scheme is considering the influence of technological and cultural practise
on the paradigm of writing. The emphasis is on the influence of the usage of the
Abacus on reality and on the concept of literal and algebraic writing. It is thought
that the development of the concept of zero and the organizational system of po-
sitionality is an interpretation of the practice of the usage of the Abacus in calcu-
lations. Hence, techniques of computations have influenced the general structure
of writing.

http://www.thinkartlab.com/CCR/rudys-chinese-challenge.html
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http://www.thinkartlab.com/CCR/rudys-chinese-challenge.html
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6   Reasoning beyond propositions and notions
Reasoning beyond apophansis and hierarchy (diairesis).
Semantic and ontological considerations about the new way of calculating.

Chad Hanson writes:
Chinese linguistic thought focused on names not sentences. 

http://www.hku.hk/philodep/ch/lang.htm
Diairesis on Proto-Structures

Logic systems distributed over
the proto-structure.
Linguistic and logical structure
of diairesis: genus proximum/
differentia specifica.
Up and down; the same. (Diels)

But the conceptual use of the tri-
angle is in strict conflict to the bi-
nary structure of the diaeresis.

Diairesis is applicable to both
approaches, the sentence- and
the notion-based.

http://www.vordenker.de/ggphi-
l o sophy/
gg_life_as_polycontexturality.pdf

http://www.vordenker.de/ggphi-
l o sophy/gg_ iden t i t y - neg -
language_biling.pdf

Khu Shijiei triangle, depth 8, 1303.
http://www.roma.unisa.edu.au/07305/pascal.htm

Yang Hui (Pascal's) triangle, as depicted by the ancient Chinese using rod numerals.
Yang Hui (ókãP, c. 1238 - c. 1298)

http://people.bath.ac.uk/ma3mja/patterns.html

http://www.hku.hk/philodep/ch/lang.htm
http://www.vordenker.de/ggphi-losophy/
http://www.vordenker.de/ggphi-losophy/
http://www.roma.unisa.edu.au/07305/pascal.htm
http://people.bath.ac.uk/ma3mja/patterns.html
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B. Tabular Morphogrammatics

1   Towards a tabular distribution of morphograms
Interactional and reflectional morphogrammatics as a kenomic abacus.
Morphograms are manipulated by operators and moved and transformed on the

grid of the tabular kenomic abacus. Like with the abacus, the meaning of the morpho-
grams is determined by their definition as elements and by their position in the posi-
tional grid.

A special type of morphogrammatics is introduced. It can be called a quindecimal
positional morphogrammatic system because its basic elements are 15 morphograms
– and not more. But these 15 morphograms can be distributed over arbitrary large
grids of the positional system. Like the calculi (stones) or numbers, the meaning of the
morphograms is realized by their positionality in the tabular positional system.

Cellular Automata can be seen in an analogy to the kenomic abacus. But CA is strict-
ly remaining in the framework of identity of its signs and rules.

On the other hand, the classic Chinese Abacus is equivalent to a simple cellular au-
tomaton for numeric calculations. 

The idea goes back to Gotthard Gunther’s concept of place-valued logics and later,
of place-designator for numeric systems.

To realize his place-valued logic he had to introduce a value-free dimension, called
morphogrammatics, because it deals with the pure structure (Gestalt, morphe) of logi-
cal functions. Thus, the concept of positionality was moved from logical functions to
their underlying morphograms.

This transitions from numeric to logical place-valued or positional systems has to be
pushed further to a tabular positional framework for any kind formal systems (Church,
Post, Thue, Markov, Smullyan).

poly-Lambda Calculus
Lambda Calculi in polycontextural Situations.
http://www.thinkartlab.com/pkl/lola/poly-Lambda_Calculus.pdf

http://www.thinkartlab.com/pkl/lola/poly-Lambda_Calculus.pdf


1.1  From: Cybernetic Ontology
The pathos of quindecimality

Their full meaning still escapes us, but this much may be said now: no matter how
comprehensive the logical systems we construct and no matter how many values we
care to introduce, these patterns and nothing else will be the eternally recurring struc-
tural units of trans-classic systems.

Our values may change but these fifteen units will persist.

In order to stress the logical significance of these patterns, and to point out that they,
and not their actual value occupancies, represent invariants in any logic we shall give
them a special name. These patterns will be called "morphograms", since each of them
represents an individual structure or Gestalt (äçèûÖ). And if we regard a logic not from
the viewpoint of values but of morphograms we shall refer to it as a "morphogrammat-
ic" system. p. 30

Subjectivity: A question of transjunctions
We propose as basis for a general consensus the following statement: if a cybernet-

icist states that an observed system shows the behavioral traits of subjectivity he does
so with the strict understanding that he means only that the observed events show partly
or wholly the logical structure of transjunction.  p.34

de dicto/de re: radicalized
Everybody is familiar with these three aspects of subjectivity. The first is commonly

called a thought; the second, an "objective" subject or person; the last, self-awareness
or self-consciousness. These three distinctions correspond to the three varieties of rejec-
tion of a two-valued alternative which Table IV demonstrates:

a) partial rejection: morphograms [9] - [12] and [14]
b) total, undifferentiated, rejection: morphogram [13]
c) total, differentiated, rejection: morphogram [15]

A thought is always a thought of something. This always implies a partial refusal of
identification of (subjective) form and (objective) content. This fact has been noted time
and again in the history of philosophic logic, but the theory of logical calculi has so far
neglected to make use of it. 

Any content of a thought is, as such, strictly objective; it consequently obeys the laws
of two-valued logic. It follows that for the content the classic alternative of two mutually
exclusive values has to be accepted. 

On the other hand, the form of a thought, relative to its content, is always subjective.
It therefore rejects the alternative. In conformity with this situation the morphograms [9]
- [12] and [14] always carry, in the second and third rows of Table IV, both an accep-
tance and a rejection value. Together, they represent all possible modes of acceptance
and rejection.

Gunther, Cybernetic Ontology
http://www.vordenker.de/ggphilosophy/gg_cyb_ontology.pdf

After all, morphograms are neither de dicto nor de re. And neither-nor is still a
language-dependent formulation of the morphogrammatic action of rejection by
transjunctions. It is common to refer to the Sanskrit "neti/neti" in this case. Mor-
phograms are enabling cognitive attitudes, they are the patterns of cognition but
not themselves involved in modeling and representing subjective or objective
world-data.

What Gunther did is to interpret morphograms for cognitive attitudes. The mor-
phograms [1] to [8] for the de-re-attitude, and the morphograms [9] to [12] for de-
dicto-attitude, and the morphograms [13] to [15] for self-reflectional attitudes of
cognitive systems.

http://www.vordenker.de/ggphilosophy/gg_cyb_ontology.pdf
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1.2 Positionality in Dialogical Logics
Positionality in the sense of distribution of actors appears well also in dialogical log-

ics (Lorenzen), game logics (Hintikka) and with great generality in ludics (Girard). 
But this kind of positionality is not to confuse with the positionality of the numeric po-

sition system of arithmetic nor with anything kenogrammatic.

Distribution of Proponent and Opponent.
Reduction of m-actors to two actors: Abramsky

Superfluity of Lorenzen’s criticism of Gunther’s morphogrammatics.

Morphogrammatic abstractions of dialogue rules.
Morphograms of dialog rules.

The morph-abstraction is not depending on the existence of classical negation. It is
not dealing with "values" but with the rules and the rules are depending on the oppo-
nent/proponent-dichotomy. Hence, the morphic abstraction is an abstraction from/of
the opponent/proponent-frame. And is delivering the opponent/proponent-free in-
scription of the actions of the actors constituting logical operators.

Different morphic abstraction can be introduced. Gunther’s classic abstraction is ne-
gation-based. Thus, his morphograms are negation-invariant patterns of logical oper-
ators. A stronger but still "symmetric" morphic abstraction is introduced by an
abstraction based on duality. Thus, it includes an iterative application of negations, like
in DeMorgan formulas. The result of such an abstraction could be called DeMorgan-
independent or simply duality-independent patterns.

The timide positionality of dialogue logics or in general game logics has to be in-
volved into the game of dissemination over the positional matrix to produce polylogic.

morph Opp Prop Rule Rule

morph Opp Pr

,� ,� � �

,�

( ) = [ ]

oop Rule morph Prop Opp Rule

morph O

,� � � ,� ,� �( ) = ( )
ppp Prop Rule,� ,� � �∧( )( ) = ∧[ ]

PolyLogics Opp Prop Rules

m

m m m m( ) ( ) ( ) ( )= ( )� ,� ,�

oorph Opp Prop Rules Rulesm m m m( ) ( ) ( ) ( )( ) = [,� ,� � ]]

[ ] = ( )( ) ( )Rules morphograms
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m m

ccs Operators morphograms= ( )� ,�



1.2.1 Correspondence between dialogical and tableaux rules for classical logic

"The philosophical point of dialogical logic is that this approach does not under-
stand semantics as mapping names and relationships into the real world to obtain an
abstract counterpart of it, but as acting upon them in a particular way." Rahman 

http://www.hf.uio.no/filosofi/njpl/vol3no1/symbexis/node2.html

"For the intuitionistic tableaux, the structural rule about the restriction on defences
has to be considered. The idea is quite simple: the tableaux system allows all the pos-
sible defences (even the atomic ones) to be written down, but as soon as determinate
formulae (negations, conditionals, universal quantifiers) of P are attacked all others will
be deleted. Those formulae which compel the rest of P's formulae to be deleted will be
indicated with the expression ̀ ` O[O]'' (or ̀ `P[O] ''), which reads save O's formulae and
delete all of P's formulae stated before." Rahman

Because of the proviso [O], intuitionist negation rules are not as symmetric as
the classic ones. Its symmetry is recovered on a structural level of opponent/pro-
ponent which coincides in the classic case with the symmetry of the rules.
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Basic interpretations of morphograms

The operation logification is interpreting the morphograms mg as binary logical op-
erators in the frame of the variables p and q of a m-valued polylogic.

Dialogification of the morphogram (ab) is producing the pair opponent/proponent,
valuation of the morphogram is producing the truth-values (true, false).

Some wordings about the morphic abstraction of observer activities
"Durch den Durchgang durch alle strukturell möglichen 'subjektiven' Beschreibungen

durch den Observer wird das Objekt der Beschreibung 'objektiv', d.h. observer-invariant
'als solches' bestimmt. Das Objekt ist also nicht bloß eine Konstruktion der Observation,
sondern bestimmt selbst wiederum die Struktur der Subjektivität der Observation durch seine
Objektivität bzw. Objektionalität. Der auf diesem Weg gewonnene Begriff der Sache
entspricht dem Mechanismus des Begriffs der Sache und wird als solcher in der subjekt-un-
abhängigen Morphogrammatik inskribiert.

Kaehr, Diskontexturalitäten: Wozu neue Formen des Denkens? in:
http://www.thinkartlab.com/pkl/media/DISSEM-final.pdf

1.2.2 Multi-agent systems
"Whither negation? In 2-person Game Semantics, negation is interpreted as role inter-

change. This generalizes in the multi-agent setting to role permutation." Abramsky

http://www.illc.uva.nl/HPI/Draft_Information_Processes_and_Games.pdf

Hence, again, the morphic abstraction is independent of the number of agents in-
volved. Simply, abstract over the permutations. That’s it. In this case, it doesn’t matter
if n-person Game Semantics is reducible to 2-person games or not.

1.2.3 Loci in ludics

Only locations matters. Jean-Yves Girard
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1.2.4 Tableaux based morphic abstractions for junctions

Generalized setting of the abstraction
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1.3 Smullyan’s Unification as an abstraction

Another interesting abstraction is proved by Smullyan’s unification method.

Smullyan’s Unification

With the conjugational properties
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2   Notations for morphogrammatic compounds
Explicitness of information: 

Logic-Tableaux (+ structure) 
Structural Matrix  
Logic-Matrix 
Morphogram-Matrix.

There is no simple algorithm which is producing the logical tableaux out of the mor-
phogrammatic matrix. Hence, the relationship between morphogrammatics and poly-
logics has to be specially considered in an own study.

Structure, meaning and relevance of morphograms.

Classic representation of morphogrammatic compounds as matrices

 Patterns: [1, 1, 1]         [1, 1, 3]                [1, 3, 1]               [1, 3, 3]              [1, 3, 4]

 Classic representation of morphogrammatic compounds as chains

New representation of morphograms onto positional matrix
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2.1 Structure, Meaning and Relevance of Morphograms
Distribution and mediation of morphograms or logical operations is not yet consid-

ering the change or shift of meaning depending on the position of the morphograms
or logical operations. It is presumed that their meaning is defined and stable and the
distributed and mediated if possible.

The new emphasis on positionality is taking the fact serious that a morphogram is
not only defined by its structure but also by the position it takes in the matrix.

The logical or contextual meaning of the morphogram E is defined by its place in the
tabular positional system. Thus, a morphogram has two aspects of meaning: its defini-
tion as such and its place in the matrix. The definition of the morphogram determines
its structural meaning and its place the contextual meaning which can be understood
as the relevancy of the morphogram. 

All occurrences of the morphogram E are morphogrammatically equivalent but they
are placed at different loci in the matrix. Also they keep their structural meaning as the
morphogram E their relevance is different at each place.

Some modi of relevance are given by the operators of distribution and replication,
i.e., the way the position of a morphogram is defined. In a chain of morphograms, the
morphogram is positioned by the distributor. In a reflectional or cloning situation the
morphogram is positioned by the operator of replication. In general, the super-opera-
tor involved are defining the kind of positioning and thus, the relevance of a morpho-
gram in a positional matrix.

The matrix system is in itself a composition and only for notational reasons written as
a global matrix with global entries.

Chain representation onto positional matrix
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In the example, polysemy of morphograms is interpreted as different distributions of
the same morphogram over different loci of the tabular matrix. There is only one mor-
phogram E but distributed over different places according to the super-operator red (re-
duction). The compounds of the distributed morphograms E are building, globally,
different patterns of distributed Es.

The pattern of the distribution is: [Eøø, øøø, øEE].
Thus, polysemy is explained as the occurrence of the same morphogram in different

contexts.
The introduction of the tabular setting may be only a systematic cleanup, without any

changes in the combinatory results. The relevance of the tabular approach comes not
only well into play with the representation of the morphograms for transjunctions but is
significant for the management of the whole morphogrammatic calculus.

Matrix and  brackets

The matrix and the bracket representations are neutral to morphogrammatics and
logics. So, what is their meaning? The polycontextural matrix and its bracket represen-
tation are designing the framework of a general theory of structural interactionality and
reflectionality for computational systems.

 

[ ]EEE S S S S S S S S S3 1
1

2
1

3
1

1
2

2
2

3
2

1
3

2
3

3
3

1 ○ ○− − − − − − −

22

3

4

5

6

-
.

-
○ ○

− − − − − − − −

− − − − − − − −

− − − − − − − −

− − − − − − −

− −− − − − − − −

− − − − − − − −

− − − − − − − −

− − − − − − −

-
.

-
○ ○

7

8

9

[ ]EEE O O O

M E

M E

M E

3

1

1

2

1 2 3

1

2

3

∅ ∅

∅ ∅

∅ ∅

 

[ ]EEE S S S S S S S S S4 1
1

2
1

3
1

1
2

2
2

3
2

1
3

2
3

3
3

1 ○ ○− − − − − − −

22

3

4

5

6

-
.

-
○ ○

− − − − − − − −

− − − − − − − −

− − − − − − − −

− − − − − − −

− −− − − − − − −

− − − − − − − −

− − − − − − − −

− − − − − − −

.
.

.
○ ○

7

8

9

�

[ ]EEE O O O

M E

M E

M E

4

1

3

3

1 2 3

1

2

3

∅ ∅

∅ ∅

∅ ∅



p g p

 Rudolf Kaehr März 7, 2007 11/26/06 DRAFT DERRIDA‘S MACHINES 46

2.2 Pattern [ id, id, red ]: S123 –> S121

PolyLogics
Towards a formalization of polycontextural Logics.
http://www.thinkartlab.com/pkl/lola/PolyLogics.pdf
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Pattern: [bif, id, id] for transjunction
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The double character of transjunctions as rejections (neti/neti) and re-positioning (im-
posing) the rejected situation in/on another system at another place is well document-
ed by the different representations proposed. This insight in the double character of
transjunctions was clear long ago (Materialien 1973). But only the different represen-
tations together given by tableaux, brackets and matrices, are inscribing the pattern
and behavior of it adequately.
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2.3 Surprises with the distribution of transjunctions?
How to explain this kind of distribution? What we learned in place-valued logics was

that transjunctions are rejecting value-alternatives and marking this rejection with val-
ues not belonging to the sub-system from which the rejection happens. The frame val-
ues of the transjunction remain accepted. Thus, there is nothing mentioned which could
justify this "wild" decomposition and distribution of parts of a transjunction over differ-
ent sub-systems and being linked with a single core value to the guest sub-system.
Again, the more mathematical settings of transjunctions by universal algebras and cat-
egory theory have failed to give any further information usable for implementation.

Transjunctions are understood in the proposed setting as compositions of partial func-
tions. Thus, the parts have to be mediated to build the whole function. Hence, a frame-
element has to function as a mediation point, additional to the core elements as rejec-
tional elements. Without such a partial mediation of the rejectional parts the partial
function would be free floating in a neighbor system without a systematic reason.
Hence, with this frame--element being mediated the partial function is fixed at it place
in the neighbor system. On the other hand, if both frame-elements would be distributed
there wouldn’t be a transjunction but a replication of a transjunctional morphogram as
such without a rejectional behavior.

This argumentation gets some justification in the context of polycontextural logics.
Without the "additional" distribution of a frame-element the tableaux-based proof sys-
tems wouldn’t work properly. This is based on experiences and not on proofs. There is
still no general mathematical framework to produce reasonable proofs for transjunc-
tional situations.

Such insights in the functioning of distributed transjunction becomes quite clear in the
proposed notational order of the sub-systems by the tabular matrix of dissemination.
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A full occupation

The desire to fill the matrix, and to involve it fully into the positional game, interac-
tional operators, like total transjunctions, are disseminated over all main positions de-
fined as the diagonal of the matrix. This full occupation, realized by 3 total
transjunctions, is an example for the standard case of dissemination. That is, no repli-
cations are involved.
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2.4 Replications as Cloning
Additional to the super-operators based on mediation, i.e., identity, permutation, re-

duction, bifurcation, I introduced the operator replication. A morphogrammatic system
with a complexity of 3 has a distribution of only 3 morphograms – and not more. But
this is changing if we involve transjunctions and understand them as interactional op-
erators.

Replications are understood in analogy to cloning. Cloned systems are not in the
same sense mediated to their neighbors as the other sub-systems but they are neverthe-
less not arbitrarily added to the system as such. Thus, a morphogrammatic system with
a complexity of 3 has a distribution of more than only 3 morphograms – all in all 9
morphograms can be involved – but not more on one level. With the concept of reflec-
tional deepness more morphograms can be involved. 

Morphograms are very flexible because they are not ruled by identity principles like
their semiotic counter-parts. Hence, if we allow other mechanism of togetherness, then
even more than 9 morphograms can be realized in a system of complexity 3. But this
is working only with togetherness as fusion, overlapping etc., and not with "concate-
nation" or chaining.

The morphogrammatic modi of togetherness had been called in German: Verkettung,
Verknüpfung, Verschmelzung (chaining, concatenation, fusion).

Replications and reductions can be, at a first glance, conflictive. Replications are
augmenting the number of operators involved. Reductions are not changing the num-
ber of operators but reducing the number of different sub-systems in play.

What is the logical operator corresponding
to this pattern and what is its morphogram
compound?
The example shows clearly a reflectional,
i.e., replicational situation for S1 and S3
and not a reduction of S2. 
Therefore, the example is not conventional
to the common definitions of place-valued
and polycontextural logic.
The new situation is using replication, thus
this operator has to be justified. 

Thus, the question is: Why do we need replicators?
From a purely formal point of view we have to take the chances given by the poly-

contextural matrix. Without replications the matrix is not fully interpreted. The matrix
gives space to interpret the formal possibility as replication. Thus, we have to try it.
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Partial transjunction

              Pattern: [id, bif, repl]
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Iterative reflectionality

                               Pattern: [repl4, repl2, repl1]

Iterative reflectionality or self-reflection of system S1, distributed twice for S2 and
once reflectionality for system S3.

Iterative reflectionality is producing a kind of a deepness which can be interpreted
as the deepness of introspection. Deepness of reflection is not connected with the rank
of a meta-language hierarchy.

The general matrix is giving the broadness of the interactional/reflectional system.
In another terminology, iterative reflectionality is opening up multi-dimensional ma-

trices representing the layers of reflection.
The couple-terms deepness/broadness was used by Gunther in the 50s to describe

the dimensions of his theory of reflection. In some sense, broadness was seen as Euro-
pean and deepness as Indian. It also mirrors well the basics of skiing and gliding. The
complex action of proemiality, the reversal ’turn on one's skiis’, is not yet involved.

Before you start skiing in the deepness and broadness of the new snow, drawing
your loops and making your looping, you have to take position. Positioning your skis
is the proemiality of any skiing.
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2.5 Interpretation of the Polycontextural Matrix
I. Strictly mediated systems
a) accretive, by the diagonal
b) iterative, by reduction or replication (cloning)
II. Not-strictly mediated systems
a) by replication

There are for a 3-contextural system only 3 occupation of the PM by junctions.
For transjunctions there are more than 3 occupations. Transjunction plus 2.
There are more than 3 occupations of the PM for II. a)

Extensions of systems
a) by iteration (cloning, replication) augmenting the rows (complication)
b) accretive by mediation augmenting the columns

Extensions: iterative, accretive and mixed

A case of cloning E

Restricted mediated cloning.
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2.5.1 Extended non-mediated cloning
Cloning can be justified by the replicator operator rep, and the replicans has not to

be mediated with a neighbor system. This is not arbitrary and confusing but ruled by
the system architecture and the replication operator.

If the tabular matrix makes any sense it has to have a reasonable interpretation on
different levels of polycontextural logic and morphogrammatics.

Extended non-mediated cloning
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3   An Abacus of Contextures

3.1 Elementary morphograms
To start somewhere, we say elementary contextures are the building blocks of com-

pound contextures, i.e., of polycontextural objects. Elementary contextures are consid-
ered at first as bi-polar objects, bi-objects or dyads, they have the properties of duality,
polarity, dichotomy, etc. But we could also start with triads or tetrads, in general with
n-ads. It follows that the complexity of elementary contextures is not stable and reduced
to bi-objects. Until know, we don’t have a clear concept and apparatus for triads or n-
ads in general. But we know quit well the definitions and behaviors of all kinds of dy-
ads, numeric, semiotic, logical, etc. Thus, we decide to start our introduction of the the-
ory of polycontexturality and morphogrammatics with dyads, i.e., bi-objects.

To start with triads could happen with the morphograms [1] to [5]. They would be
the elementary structures for more complex morphogrammatic systems. The binary
morphograms [A] and [B] would have to be understood as reductions of the triadic
morphograms.

Such an elementary bi-object appears as an iteration [A] or as an accretion [B] of
its position. Thus there are only 2 bi-objects in this interpretation of morphogrammatics:
mg = {[A], [B]}. In fact, only [B] is a complete dyad and [A] is a monad.

.

Elementary bi-objects, like [A] and [B] have continuations, again in iterative and ac-
cretive form. The tree of this continuations is producing the set: MG(3)= {[1], [2], [3],
[4], [5]}. Both, mg and MG(3) are parts of the trito-structure of kenogrammatics.

From the point of view of logic we are dealing with the morphogrammatics of unary
operations, thus avoiding complex considerations of the morphogrammatics of binary
operations as introduced above. In Na’s terms we are dealing the core-structure only.

Transjunctions between rejection and bifurcation

Transjunctions had been introduced by Gunther as binary functions with the rejec-
tional property that a couple of different truth-values can be rejected and has not to be
accepted as it happens with junctions in contrast to transjunctions. Thus, according to
Gunther, a new "bi-valence" was introduced for morphogrammatic-based place-val-
ued logics: acception/rejection. 

Later I introduced the idea of transjunctions as logical bifurcations. The splitting into
different logical systems, the holding at once at different places, was in focus. This too
worked properly for binary functions. There was no need to think of transjunctions for
unary operations. Simply because there is no value-pair to be rejected. But rejection is
only one part of bifurcation. Transjunctions are rejectional bifurcations. But not all bi-
furcations are rejectional. The splitting functionality of bifurcation can happen without
rejection. Thus, unary functions can be split. The idea of bifurcation is naturally appli-
cable for unary functions. In short: unary transjunctions are bifurcations without rejec-
tion or rejection-free bifurcations. The term "bifurcation" has not to be reduced to a
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"split (fork) into two", it can split into a multitude. It may be too much of terminology to
use the term "multi-furcation" or n-furcation instead of bifurcation.

Guided by the idea of the splitting property of bifurcation unary function can by treat-
ed in a transjunctional manner. For morphograms, the splitting has nothing to do with
a quantitative partition into parts. The morphogram splits in itself. Such a concept of
splitting has some correspondence to two other important concepts of morphogram-
matics, the concept of cloning and replication.

Replication is introduced as a cloning into itself. Cloning is a replication into others.
In other words, replication is placed in the system it derives, like reflectional introspec-
tion. Cloning is replicating a morphogram at another place, outside of its derivation.

3.2 Mapping of bi-objects onto the polycontextural matrix
Based on the experiences we made with the morphogrammatics of binary functions,

especially transjunctions, we are prepared to study the dissemination (distribution and
mediation) of bi-objects. This dissemination is a mapping of bi-objects onto the poly-
contextural matrix, ruled by the super-operators, sops = {id, perm, red, repl, clon, bif}.
Again, there is no information given by the common approach to morphograms and
morphogrammatics to organize such mappings including replication, cloning and bi-
furcation. The following are examples for: identity, reduction, replication, cloning and
bifurcation. Not including permutation.

As a consequence of the fact that the complexity of elementary contextures is flexible,
decompositions in triads or general n-ads are possible. It is also of importance to see
that mixed "based" systems, say dyads, triads, tetrads, etc. could hold at once inn mor-
phogrammatic and as an interpretation in pluri-dimensional arithmetics. Depending on
the complexity of domain under considerations the structural complexity can differ for
different disseminated arithmetical systems. Obviously, this has nothing to do with the
classic concept of n-ary representation of natural numbers by different numeric bases.
As we know, all n-ary representations can be modeled and reduced to the dyadic rep-
resentation of numbers. 



 Rudolf Kaehr März 7, 2007 11/26/06 DRAFT DERRIDA‘S MACHINES 58

Dyads in Triads
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3.3 Dynamics of Dissemination

3.3.1 Dyads in Triads and Tetrads
 

3.3.2 Triads in Tetrades and Quintads
It has to be mentioned again,
that real triads, i.e., triadic-tri-
chotomic objects, are not well
understood today. Despite of
Peirce’s semiotics, category
theory and others, all are
based on dyads. Also Warren
McCulloch’s approach to tri-
ads didn’t have much impact
(Longyear). The same holds for
Hegelian approaches. It is still

an academic contract that n-ary relations, and whatsoever, can be reduced with-
out loss to binarism. And to insist on a structural difference between dyads and
triads is producing embarrassment for all parts.

3.3.3 n-ads in m-ads

"Perhaps you remember that Peirce has written
Ernst Schröder that he likes his monograph about
binary relations, but that he is not in love with bina-
ry relations at all. But since then we have all sorts
of axiomatic set theories, and all are implementing
the ingenious definitions of ordered pairs by Kura-
towski and Wiener. With this definition of ordered
pair you always can reduce a more complex situa-
tion to a binary one. The recent example can be found in the interesting paper of
Abramsky about game theory in computer science."

SUSHI’S LOGICS
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3.4 Operations on bi-objects

3.4.1 Reflectors

Again, such reflectional analysis, combined
with several classification systems for com-
pound structures, are well developed, docu-
mented and programmed in the book
"Morphogrammatik" (Kaehr, Mahler). A lot
of structural information and combiinatorics
can be be gathered there, for free. What is
missing in the 90s design is a free mapping
onto the polycontextural matrix managed by
the super-operators. Hence the job to do here
is to bring these two trends together.

Cycles in [MG(3), r]

In a binary arithmetic system with
X={0, 1}, the only structure is a 2-
valued permutation, correspond-
ing to a 2-valued negation:
neg(0)=1 and neg(1) = 0, thus
(neg(neg(X))=X.
Hence, the negational cycle of
binary arithmetic is the shortest
possible non-self-cycle.
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3.5 Position system for contextures
To map bi-objects as the morphograms [A] and [B] on the polycontextural matrix PM

means to use the PM as a positional system for morphograms.
In contrast to the linearity of the numeric position system, the positional matrix is at

least tabular. This tabularity, suggesting 2-dimensionality, con be repeated and aug-
mented by iterative operations, like introspection.

Until now, the position matrix PM was restricted to a regular standard form of (3,
3x3)-entries, thus PM(3,9). The elements used had been the elementary bi-objects (mor-
phograms) [A] and [B]. Both together, the PM and the bi-objects, are determining a
kind of a "binary" arithmetic of morphograms distributed over a tabular organization
scheme. And restricted, because of the complexity m=3, to a counting of only 2 steps
involving a third "mediating" step between the first and the second step.

On the base of this restriction interesting behaviors of dissemination ruled by the su-
per-operators can be studied.

But now, we would like to ”count’ further in this game of tabularity.
A new important difference to classic position systems has to be considered. That is,

the identity of the elements of distribution. In other words, in a binary arithmetic, the
elements 0 and 1 are always the same. Their numeric meaning is changing in respect
to their position but their identity as markers, 0 and 1, for the numeric value is defini-
tively identical.

Also our small morphogrammatic system with only [A] and [B] is repeating these el-
ements over different positions there identity is changing in the process of occupying
a position.

This was the case at the very beginning from [A] and [B] to, say [B, B, A] where the
first and the second occurrence of [B] is marked differently.

Another obvious difference to a classic position system is the fact that in the morpho-
grammatic case we are dealing with differences and not with atomic terms. We are
always adding in a succession the full difference, represented by [A] and [B], to the
existing configuration. This can be seen as if we would always add 0 and 1 at once
if we want to add something, that is a unit. In other words, to augment a configuration
by one bi-object, one part of the bi-partition is glued to the existing element of the con-
figuration and the other part represents the augmentation.
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3.5.1 Continuation operators

Tabular extension of morphograms

3.5.2 Composition operators
Without being involved with the positional matrix, the rules of such successions are

the rules of trito-kenogrammatic successors. There are many kinds of successions, con-
catenating, gluing melting which shouldn’t be confused.

If necessary, this gluing process can be inter-
preted as a coalition building procedure or
as a fusion. Where the environment of the
parts are adopting each other and a new
domain is added to the new whole. This can
happen, in this case, in only two ways. One
is to support a domain of the partner system
by replicating it in the domain of the coop-
erating part, or by adding a new domain to
the coalition system. Support and novelity
are the two mody of such a cooperation.

Morphogrammatik (PDF)
http://www.thinkartlab.com/pkl/media/mg-book.pdf
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 The whole tedious  intricateness   is inherited by the insistence on the simple idea
to distribute morphic dyads [A] and [B] over a tabular position systems.

The decision for kenomic dyads is nothing ultimate. Once the game is under-
stood, we can start with flexible "bases", triads, tetrads, etc.

It is not the place to go into philosophical reflections about the dyads as they
occur in Platonism or the I Ching. The only thing to recognize is that these dyads
are not part of any economy of logical, ontological and semiotical identity and its
dualism.

These dyads are functioning as the kenomic realizations of dynamic sameness
and difference in the calculations of the Abacus.

To determine the behavior of the kenomic Abacus the only ”thing" we need are
the dyads disseminated over the positional matrix.

Arithmetical representations in the sense of kenomic or dialectical numbers are
then introduced as special interpretations of the morphogrammatic structure. 

And again, natural numbers in their uniqueness are naturally obtained by freez-
ing the whole kenomic game into linearity and atomic identity.

But there is no need to freeze kenomic behaviors to get connected with numbers.
It is possible to interpret kenomic configurations as distributed binary number sys-
tems.

A kenomic Abacus is involved in computing, interactional and reflectional mod-
eling of computations.

Binary arithmetic is computing with 0 and 1. This can be interpreted as yes/no
or on/off, etc. decisions which are defining the 

 

states

 

 of a system. Kenomic com-
puting is dealing with sameness and difference. This is corresponding to 

 

behav-
iors

 

, behaviors are distinguished as the 

 

same

 

 or 

 

different

 

, not as identifiable and
separable entities or states, identical or non-identical, but as observable actions or
behaviors. Hence, morphograms are not representing the states but the processu-
ality of the switch from one state to the other. Independently of the state "0" or "1"
in the switch form (01) to (10) and from (10) to (01), the structure of the switch is
the same and is  represented by the morphogram [B]. If nothing happens to "0"
or to "1", i.e., an identity holds for (00) and (11), the structure or pattern is the
same for both behaviors, and the corresponding morphogram is [A].

 

3.5.3 Multiplication operators

3.5.4 Decomposition and Monomorphy

3.5.5 Kenomic Bisimulation
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3.6 Remembering the epsilon/nu-structure 

 

In the context of the book 

 

Morphogrammatik, p. 66,

 

 the mapping of the [A] and [B]
elements into kenomic sequences, not yet into the positional matrix, was called the 

 

ep-
silon/nu-structure,

 

 and as usual it is well documented and programmmed. 
The possibility of specific isomorphisms between different presentations is not deny-

ing the legitimacy of the fact that some presentations are opening up other develop-
ments than others.
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3.7 Numeric interpretation of dyads

 

Dyads are the numeric base system of binary numbers. There are two kinds of base
systems, complete and incomplete bases. Dyads with only one element for two places,
monads, are incomplete numeric bases. They are the base systems for purely iterative
systems, they may have nil-markers but are without a positional system. Dyads with two
elements are complete binary bases for binary positional number systems. Thus, for a
system with 3 contextures we have 5 compositions of a distribution and mediation of
monads and dyads. 
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3.7.1 Unary tree & the abstractness of computation

 

"We can, in principle, make do [auskommen] with an alphabet which contains only a
single letter, e.g. the letter |. The words of this alphabet are (apart from the empty word):
|, ||, |||, etc.These words are in a trivial way be identified with the natural numbers 0, 1,
2, ... .[...] The use of an alphabet consisting one element only does not imply an essential
limitation." Hans Hermes (1961), after: Epstein, Carnielli, p.67

 
(Extense studies about such a "stroke calculus", see Lorenzen 1962.)
Also this is very obvious, it is not as familiar as the binary introduction of natural num-

bers. Unary systems don’t have a position system for their words, binary systems can
be used as the prototype for numeric position systems. The statement that an unary al-
phabet is not putting any limitation on a theory of computability is well accepted. What
is not mentioned within this statement is the fact that such a conception of computability
is independent or neutral to the concept of positionality. Thus, computationality needs
not to be positioned, it doesn’t take a place and is therefore, again, a purely abstract
system. This abstractness is based in the abstractness or ideality of sign systems.

 

3.7.2 Mixed, unary and binary systems

 

This case of distributing binary tree is of special interest be-
cause it demands for a mediation of a tree and its 

 

dual

 

 form.
Interpreted as the representation "0" (or "1") and "1" it has to
be understood that "0" (or "1") in the first system has the value
of "1" (or "0") in the second system.
This case of distribution corresponds to the common situation
that all 3 sub-systems are structurally equivalent and are repre-
senting 3 complete binary number systems if interpreted as nu-
meric.
This are the mixed cases with unary and dyadic structures and
the fully reduced case where all dyadic subsystems are reduced
to the unary form.

All these cases above are basic forms without reflectionality
and interactionality involved. An example for a more complex constellation is given
below.
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Because this analysis is focussed on unary and binary 

 

trees

 

 and their data it could
be called a 

 

data-oriented

 

 approach. There are other interpretations of the dyads, too.
A dyad could be interpreted as an operator/operand-pair of a formal operation. To
the unary dyads only operators or operand would correspond, and to the binary dy-
ads the dichotomy of operator and operand.

 

3.8 More complex situations
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4   Calculating with the new Abacus

 

4.1 Pluri-dimensional binary arithmetic

 

Morphogrammatics as sketched until now is not telling how to calculate with num-
bers in an analogues way as we know it from the linear position system.

Morphogrammatics are the deep-structure of trans-computation.
Disseminated binary arithmetic systems are the fields of pluri-dimensional computa-

tion. Each dimension is realizing a binary number system. Other representations are
possible. Each has its advantages and disadvantages for the purpose of an introduc-
tion of transclassic number systems.
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4.1.1 Decompositions

 

 TZ= (01120211002)-tree

 

 The chain of events interpreted as a tissue of 3 binary
systems S

 

1

 

,

 

 

 

S

 

2

 

 and

 

 

 

S

 

3 with 3  elements {0, 1, 2}. Each
2 elements are defining a binary system.
TZ=(01120211002)
this chain is having at least 2 numeric interpretations:

a) [011/12/202/211/100/02] 
with the chain of sub-systems: S1S2S3S2S1S3
and
b) [011/112/202/211/1100/002] 
with the chain of sub-systems: S1S2S3S2S1S3

In this case the chain of syb-systems of a) and b) are
equal but the resolutions are of different length.
 
As in binary systems each number has a well defined
position. In binary systems the possible positions of num-
bers are calculated by 2n, trito-numbers in kenomic sys-
tems are calculated by their Stirling numbers of the 2.
kind. The unspecified graphic representation of the num-
ber TZ as a tree is specified by the following presenta-
tion. Again, only an abbreviation can be given because
of their complexity. The scheme is sketching the Stirling
development. The indices of the trito-numbers in focus,
in red, are indicated and marked by their place-number.
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 TZ= (01120211002)-decompositions

Another example
This trito-number TZ= (0112000211002) has inter-
pretations with different chains of sub-systems and dif-
ferent length of resolutions. The length of the chains of
sub-systems c) is l=8 and the length of d) is l=6. The 4.
resolutions of c) and d) are of different length, c) is 3
with (000) and d) is 6 with (200002).
 
c) [01/12/20/000/02/211/100/02] with      

 S1S2S3S1S3S2S1S3, l=8, r4=3

d) [01/12/200002/211/100/02] with

 S1S2S3S2S1S3, l=6, r4=6

dec 01120211002

011

12

1 2 4

4 11

( )

( )

( )
. .

.�����

���������

� ��������

�

. .

. .

202

211

11 32 93

93 284 851

( )

( )

�����������������

��������

. .100 851 2552 7655( )

��������������� .02 7655 23988( )



























( )

( )

��

�����

��������

. .

. .

011

112

1 2 4

2 4 11

���

� �����������

. .

. .

202

211

11 32 93

93 284 851

( )

( )

�������������������

�

. . .1100 284 851 2552 7655( )

����������������������� . .002 2552 7655 23988( )



























T number sequence3

0

0

( ) −

( )

( )

�

�

,

(0112000211002)

��

,� ,� ,� ,�

...,�

1

10 1 0 2

0

( )( )
( ) ( )( ) ( ) ( ) ( )( )( )

( )) ( ) ( )( )( )
( ) ( ) ( )( )

,� ,� ,�...

...,� ,� ,� ,�

1

1 2

2

0 ....

...,� ,� ,� ,�...

...,� ,�

( )
( ) ( ) ( )( )( )
( )

0

0

1 2

11 2

0 1 2

( ) ( )( )( )
( ) ( ) ( )( )

,� ,�...

...,� ,� ,� ,�...(( )
( ) ( ) ( )( )( )
( ) ( )

...,� ,� ,� ,�...

...,� ,�

0 2

0

1

1 ,,� , ...

...,� ,� ,� ,�...

..

2

1 20

( )( )( )
( ) ( ) ( )( )( )

..,� ,� ,� ,�...

...,� ,� ,�

0

2

1 2

0 1

( ) ( ) ( )( )( )
( ) ( ) ( ))( )( )







































,�...


















4.1.2 Cracks and gaps 

"The law which we applied was the principle of numerical induction; and al-
though nobody has ever counted up to 101000, or ever will, we know perfectly
well that it would be the height of absurdity to assume that our law will stop being
valid at the quoted number and start working again at 1010000.

We know this with absolute certainity because we are aware of the fact that the
principle of induction is nothing but an expression of the reflective procedure our
consciousness employs in order to become aware of a sequence of numbers. The
breaking down of the law even for one single number out of the infinity would
mean there is no numerical consciousness at all!" Gotthard Gunther, Cybernetic
Ontology, p. 360

4.1.3 Leaps and saltations

4.2 Interpretations

System change

011 ••••

12 •

System1

System2

System3 202 •••

211

100

02
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4.2.1 Negotations about interpretations

S1 = (0111)        ==
S2 = (12)            ==
S3 = (2022)        ==
S2 = (2111) :: S2=(211), S1=(110), S3=(00)
S1 = (1000)        =≠
S3 = (02)            ==

The possibility to interpret a sequence in different ways enables an asymmetry be-
tween the construction and the destruction of the sequence. The way down has not to
be the way up. Asymmetric inversions are possible. And obviously, a separation and
reunion of the path of the sequence is accessible, too.

I

 
system change with bifurcation 

S1 S2 S3
S2 S1 S3 

S2
S1S3

0111220221110002

22,3

01 = 03    12 = 11

0 1 0 1

22,3

01 = 03 11 = 12

0 1 0 1 22

0 1 0 1 1 2

0 1 1

2

 

Syst1 Syst2

0

02

Syst3
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4.3 Bisimulations vs. equivalence and equality
Bisimulation – the Basic Case

We first give the definition for the basic modal language.
Let M = (W, R, V) and M´= (W´, R‘, V‘) be two models.
A non-empty binary relation Z WxW‘is called bisimulation between M and M‘if the

following conditions are satisfied:
(i)   If wZw‘then w and w‘satisfify the same letters.
(ii)  If wZw‘and Rwv, then there exists v‘(in M‘) 
      such that vZv‘and R‘w‘v´  (the forth condition).
(iii) The converse of (ii): if wZw´and R‘w‘v‘. then there exists v (in M) such that

         vZv‘and Rwv (the back condition).

Example:
Models M and N are bisimilar under the relation Z. 
Z = {(1,a), (2,b), (2,c), (3,d), (4,e), (5,e)}

Bisimilar Models

The two models M and N have the same behavior in respect to the relation Z. To
each transition in M there is a corresponding transition in N which is fulfilling the states
of the knots p and q. Hence, the models M and N are bisimilar.

"Quite simply, a bisimulation is a relation between two models in which related
states have identical atomic information and matching possibilities."

Modal Logic (Blackburn et al.)
Bisimulation, Locality, and Computation

"Evaluating a modal formula amounts to running an automaton: we place it at some
state inside a structure and let it search for information. The automaton is only permitted
to explore by making transitions to neighboring states; that is, it works locally.

Suppose such an automaton is standing at a state w in a model M, and we pick it
up and place it at state w´in a different model M´; would it notice the switch? If w and
w´are bisimilar, no. Our atomaton cares only about the information at the current state
and the information accessible by making a transition – it is indifferent to everything
else. (...)" p. 68

Morphogramms and Bisimulation
A  morphogram MG = (aabcbcbaa) can be interpreted as a trito-number TZ =

(001212100). The behavior of this trito-number can be observed only by its actions in
accessible sub-systems which are here the binary components. The trito-number TZ is
showing two different behaviors M and N which are represented by the two different
developments of binary systems.

M = (S1122221) and 
N = (S1122211). 

1 2

4

5

a

b

c

d e

p q p

q

q
p

q

q

p q

M N

3
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M and N are different at the second last position in respect to S1 and S2.

In contrast, the two trito-numbers TZ1= (001212) with a sub-system development
S11222 and TZ2 = (001012) with a sub-system development S11112 are not bisimilar
because the states at the position 4 of both differs with "2" for TZ1 and "0" for TZ2.

S1

S2

S2

S1

M

N
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5   Computation and  Iterability

5.1 Turing, Zuse and Gurevich
"The basic idea is very simple, at least in the sequential case, when time is sequential

(the algorithm starts in some initial state S0 and goes through states S1, S2, etc.) and
only a bounded amount of work is done each step. 

Each state can be represented by a first-order structure: a set with relations and func-
tions. (...) Thus, the run can be seen as a succession of first-order structures, but this
isn´t a very fruitful way to see the process. 

How do we get from a state Si to the next state Si+1? Following the algorithm, we
perform a bounded number of transition rules of very simple form." Gurevich, p. 5

"A computation of R consists of a finite or infinite sequence of states M0...Mn..., such
that for each a 0 Mn arises from Mn-1 by one application of some rule in R." 

In short: "IF b, THEN U1 .....Uk".

„What Turing did was to show that calculation can be broken down into the iteration
(controlled by a ´program´) of extremely simple concrete operations; ...“ Gandy, in:
Herken, p. 101

Konrad Zuse writes: "Rechnen heisst: Aus gegebenen Angaben nach einer Vorschrift
neue Angaben bilden."  (Plankalkül)

[Computation means: Producing new information from given information according
to a rule.]

In all those descriptions of computation as iterations there is no proviso mentioned
that restricts computation to linearity. Obviously, it is, also not declared, the conditio
sine qua non of any computation. Computation, as we know it, is restricted to linearity.
This is not in conflict with parallel and concurrent computation as we can learn from
Zuse’s Plankalkül.

Because computation has a very abstract model it is also independent of any posi-
tionality. A stroke calculus is doing the job of defining the realm of computability.

Hence, computations don’t take place. They simply happen as physical events, i.e.,
in space and time. But space is not a structural place, locus, position, like in a position-
al system.

5.2 TransComputation as Accretion
Iterability is not reduced to iteration it also includes alteration in the sense of accre-

tion.
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6   Abaci in an interactional/reflectional game
The following descriptions of reflectional interactions are not necessarily different to

the models known by Second-Order Cybernetics, especially Gordon Pask, Paul Pan-
ngaro and Vladimir Levebvre. The main difference consists in the fact that the polycon-
textural modeling and design is intended on the level of computation and not in an
applicative way. Thus, it is postulated that mathematics as such should be designed as
interactional and reflectional in all its basic constituents beginning with its morpho-
grams.

System S1 has a model of the inner structure of system S2 and is placing this model
in its interactional space S1.2. System S2 is not involved in any reflection or interac-
tion, i.e., S2 is not modeling its environment consisting of the systems S1 and S3. Also
system S3 itself is of reduced structure, it has a model of system S2, too. Because sys-
tem S3 is mediating between the systems S1 and S2, system S1 and system S3 can
communicate about system S2. But this will happen without a structural representation
as an interactional/reflectional mode between S1 and S3 because S1 has no repre-
sentation of S3 and S3 neither from S1.

The interaction of S2 with S1 and S3 is not sending information but the structural
frame in which information can be set. The structural frame is a structured place-holder
for information but not itself information in the sense of a message.
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In this case a structural representation happens as an interactional but with no reflec-
tional mode between S1.1 and S2.2 because both have a representation of each other
as S1.2 and S2.2 and are mediated by their representations of S3 as S1.3 and S2.2.
Additionally, S3.3 has representations from S1 and S2 as S3.1 and S3.2. Interactional
behaviors are realized by the cloning operator "clon".

The same morphogrammatic pattern may have a different realization including a re-
flectional action represented by the replication operator "repl".

In fact cloning is also a bi-directional action because the cloned "object" has to be
accepted by the neighbor systems. It has to be offered a structural place to set the
cloned object. Thus, the interaction happens as a double action of duplicating (cloning)
and acceptance of the duplicate at place in a neighbor system involved into the inter-
action.
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6.1 A model of a reflectional/interactional 3-agent system

Model of a 2-agent system

Model of a 3-agent system
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6.2 An interpretation of the model

 

6.2.1 How does it work?

 

System S3 (C) is giving place to reflect/interact for System1 (A) and systemS2 (B)
about their common goals and rules. Thus, system C is playing the part of a super-visor
enabling S1 and S2 to realize a kind of self-reflection about their common actions.
Without S3, the goals and rules would be 

 

implicit

 

 for S1 and S2 and pre-given for their
game. And thus, not changeable 

 

during

 

 the game. If they would like to change the
game, they would have to stop, to change and then to restart a new game. Start and
end of an interactional/reflectional game between system1 and system2 is placed in
system3. The negotiation about the goals and the rules and the decision or even the
contract to accept the situation is outside the actual actions between A and B and is
therefore localized, systematically, at the place C.

 

6.2.2 Metaphor of an application

 

calculation

 

 (goal)

 

reflection

 

 (modeling)

 

interaction

 

 (action, realization)

 

comparison

 

 (correction). 
Comparision can be seen as a  compu-
tation.

 

Calculations

 

My calculations are my-calculations,
Your calculations are your-calculations,
Our calculations are our-calculations. 

 

Interaction

 

My interactions are accepted by your-modeling as my-interactions,
Your interactions are accepted by my-modeling as your-interactions,
Our interactions are accepted by our-modeling as our-interactions.

 

Modeling

 

I am reflecting/modeling your calculation in my-reflection,
You are reflecting/modeling my-calculations in your-reflection,
We are reflecting/modeling our-calculations in our-reflection.

 
Comparision

 I am comparing (reflecting, modeling) 
your-interaction with my-reflection on your-calculation in my-comparison.
You are comparing 
my-interaction with your-reflection on my-calculation in your-comparison.
We are comparing (super-vision) 
our-interactions with our-reflections on our-calculations in our-comparison.

 

Leibniz-Monads

 

Each agent is able to give structural space to himself and to the neighbor agents to

 

model

 

 all his neighbor agents’ 

 

interactions

 

; 

 

comparising

 

 and correcting his model

My              Your              Our

calculation    calculation     calculation
interaction    interaction      interaction
reflection      reflection        reflection
comparision  comparision   comparision



 

g

 



 

 Rudolf Kaehr März 7, 2007 11/26/06

 

DRAFT 

 

DERRIDA‘S MACHINES 80

 

about the others 

 

calculations

 

 and 

 

interactions

 

, and being able to be interacted by all
his neighbor agents. 

This is the case of a 

 

harmonized

 

 agent system, called the 

 

Leibniz-Monads

 

.

 

6.2.3 System environment distinction

 

What’s my environment is your system,
What’s your environment is my system,
What’s our environments and our systems is the environment of our-system.

 

Chiasm of system/environment

Chiastic interdependency

 

Interactions

 

 are based on computations and reflections.

 

Computations

 

 are based on interactions and reflections.

 

Reflections

 

 are based on interactions and computations.

 

Comparisions

 

 are based on reflections and interactions.

 

From Dialogues to Polylogues
http://www.thinkartlab.com/pkl/lola/Games-short.pdf

order relation

exchange relation
coincidence
     relation

system1

system2

environment1

environment2

system3 environment3

 

interA

interB

calc

mod

comp calc

comp

mod

A

B

calc    mod    comp

C

interC

http://www.thinkartlab.com/pkl/lola/Games-short.pdf


 

6.2.4 To calculate means to take part in the culture of calculation

 

What are we doing if we are using an Abacus?
The common answer is: Buy an Abacus, follow the instructions and then use it

for your business calculations. What you are doing while using an Abacus is to
calculate with the physical devise Abacus according to the rules you learned from
your buckled. You have not to understand that your Abacus is based on a position-
al system to organize your calculations. 

This might not be totally wrong. But this explanation is presupposing a lot more.

Even in the solitaire use of an Abacus the complexity of the game always hap-
pens. Even if my-calculation are my-calculation, they are not reasonable in isola-
tion. I learned the rules from a teacher. He represents your-calculation. And our-
calculation happens as a result of my-calculation and your-calculation, that is, if
my-calculations correspond to the calculation I learned from your-calculation. This
gives my-calculation the guarantee that my-calculations are correct. The correct-
ness of my-calculations are represented in our-calculations, i.e., in the accordance
with the general rules. Thus, there is never something like my-calculation in a soli-
taire isolation.

To know about these intricate relationships is a first step to implement them in a
physical mechanism, i.e., to 

 

objectify

 

 the mental processes of learning and using
an Abacus. 

Now we can leave the metaphor of the Abacus and turn to better funded re-
search programs for cognitive systems in robotics and game development.

And all the rest is the work to be done by a plumper. But as we know, there are
no plumpers left.

 

Other wordings

 

Interaction is based on 

 

inquiries

 

 and not on calls (send, receive). Inquiries can
be 

 

rejected

 

 or 

 

accepted

 

. The inquiring forms an internal model of the inquirer, only
if this succeeds, can it step into a communication process. In the communication
model, defined through (process, send, receive, buffer), additionally to the non-in-
teractive structure of the algorithms, this basic encounter structure of the agents
must be pre-given by the designer.

 

FIBONACCI in ConTeXtures
http://www.thinkartlab.com/pkl/lola/FIBONACCI.pdf

http://www.thinkartlab.com/pkl/lola/FIBONACCI.pdf
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Other reflectional interaction models (Pangaro, Levebvre, Pask)

 

A nicer design is given for similar
situations of 

 

participative interac-
tion

 

 by Paul Pangaro. 

 

danm.ucsc.edu/courses/2004-05/
spring/204/lectures/paul_pangaro
Paul_Pangaro_lecture

 

www.pangaro.com

 

Vladimir Levebvre

 

h t tp ://www.c4ads .o rg/ f i l e s/day.1 .1300.1400.v lad imi r . l e feb -
vre.pdf?PHPSESSID=928087361390dbc3005b4b1e16ba6448

http://www.c4ads.org/files/day.1.1300.1400.vladimir.lefeb-vre
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Gordon Pask’s Interface

 

An interface is a "Schnitt und Naht"-Stelle

Chiasms vs. circles


