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Abstract: Many mathematicians and philosophers say that mathematical objects have a real existence

independent of any human activities or values. But do mathematicians behave as if this were true? This

paper applies techniques from linguistics and sociology to show that mathematical discourse involves a

highly nuanced assignment of values to objects, which is then used in resolving references to objects;

it also discusses the nature of abstraction, and shows how the appearance of reality for mathematical

objects arises through the use of conventions from ordinary discourse, including narrative. Results in

the paper have implications for the exposition and use of mathematics, for mathematics education, and

for philosophy.

1 Introduction

This paper is an empirical study of mathematics as a social activity, focused on the construction of

mathematical objects, how values get attached to them, and how those values are used. Our analytic

tools include ethnomethodology, discourse analysis (in the sense of sociolinguistics), cognitive linguistics,

and activity theory. We will see that much interesting information is hidden in conventions that we

take for granted. In particular, we will see that the modes of introduction for mathematical objects

are highly nuanced, expressing the three values of mathematical importance, mathematical di�culty,

and degree of existence1; there are even rhetorical and dramatic e�ects. We will also see how the

transcendence of mathematical objects is achieved through discourse practice, and how mathematical

objects are grounded in experience with the everyday world.

Ordinary folk �nd it obvious that mathematical objects2, like the integer 329, the group of sym-

metries of a cube, the �eld of real numbers, or a proof of the in�nitude of primes, are not directly

perceptible in the same way as are a tree, a car, or a cow. Nevertheless, there is a school of the philos-

ophy of mathematics which claims that mathematical objects are just as real as trees, cars, and cows

| perhaps even more real, because they are not subject to mundane physical problems like decay and

dissolution. This school is called Platonism, or mathematical realism, or just realism; see [28] for a

detailed discussion. Prominent recent adherents include Roger Penrose, who used Platonism as a basis

for his approach to consciousness [31, 32], and John Perry and Jon Barwise, who used realism to support

their claims for the applicability of their situation theory [2]. Among numerous other Platonists are

Descartes and Kant. Platonism has also been much attacked3, and even ridiculed.

It is interesting that recent scienti�c research on the bases of perception, and more generally of

consciousness, lends a kind of support to Platonism, by showing that our preceptions of trees, cars,

cows, etc. result from complex neural processing that seems e�ortless to us only because it is largely

unconscious; e.g., see [14] for a recent survey of consciousness studies. However, this processing is

heavily conditioned by complex social factors. For example, the world does not have an inherent

concept of \tree" that is distinct from that of \bush"; it could easily have happened that our concept

1
This may sound strange, but we will see that it comes up naturally, for example, in proofs by contradiction.

2
We take objects to include assertions and proofs, as well a numbers, sets, functions, etc.; see Section 2.

3
Heidegger gives a short but cogent philosophical history of Platonism in Chapter 24 of [19], arguing that Plato was

not a Platonist and that Nietzsche was the �rst to fully overcome Platonism, an insight that may have precipitated his

�nal madness. Another notable critic is Ludwig Wittgenstein. An excellent recent attack by George Lako� and Rafael

N�u~nez [22] is based on cognitive linguistics.
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of \tree" was di�erent from what it is, either including some things currently excluded, or vice versa,

or both. Any real concept is sustained and modi�ed through social interaction, and is subject not only

to problematic cases (such as bonsai), but also to di�erent uses in di�erent sub-communities, as well as

to misunderstandings misuses, and evolution, e.g., though metaphorical extension. Moreover, the social

category into which a perception is placed also e�ects the perception, as is brought out, for example, in

James Gibson's theory of a�ordances [10]. Although mathematical objects might di�er less from real

world objects than was once thought, and future research might bring them even closer together, we

can still say that Platonic objects do not appear in the real world, and that it is not possible to observe

any causal role for them in any real mathematical discourse; in that sense, they do not exist.

Perhaps we can better appreciate some of the di�culties faced by a sociology of mathematics by

contemplating the following two paradoxes:

1. Actual instances of mathematics are embodied, situated, and material; but mathematical objects

appear to be objective and transcendental.

2. Mathematics is very abstract; but it is also very applicable.

Regarding the �rst, it is clear that mathematical objects are not real in the ordinary sense of tangibility;

yet doing mathematics feels like working with real things. How does this happen? The second paradox

has seemed particularly acute to physicists, who have produced a good deal of discussion, starting from

a famous paper by Eugene Wigner [42]. We will see how these paradoxes can be resolved through certain

observations about the language of mathematics.

In particular, we will examine the following questions: How are mathematical objects introduced

into mathematical discourse? How are mathematical objects referenced within mathematical discourse?

What role do values play in mathematical discourse (if any)? We will see that mathematical discourse

builds on conventions of ordinary discourse types, especially narrative. We will look for deviations from

expected usage and ask what extra work is being done by them. And of course, we will use what we

discover to see what we can learn about the nature of mathematics. One motivation for this paper is to

improve the teaching of mathematics, a subject about which there is much controversy, especially for

secondary schools. Another motivation is to help design better user interfaces for mechanical theorem

proving systems, since our research group at UCSD is building such a system [16, 13, 12].

Section 2 describes the data and methods that are used, Section 3 discusses related literature,

Sections 4 and 5 consider how mathematical objects and assertions are introduced, Section 6 considers

how they are referenced, and the nature of abstraction, Section 7 describes the discourse structure of

proofs and narratives, Section 8 applies some ideas from cognitive linguistics, and Section 9 gives some

conclusions and a summary. I thank Leigh Star for some valuable comments, Todd O'Brien for help

with some linguistic issues, and Charlotte Linde for educating me in socio-linguistics during our long

collaboration.

2 Data and Method

Our data are taken from mathematics textbooks and papers, from �eld notes, and from video tapes of

live mathematics at a black (or white) board. We collected examples from over 20 books and papers,

which happened to be in my o�ce at the time of writing, over �ve hours of videotape collected in the

United Kingdom and the US, all in English, and �eld notes from various lectures and other events. We

will use the term natural mathematics for instances of the actual situated practice of mathematics,

in textbooks, papers, or live interaction, and the term text for any segment taken from any one of these.

We note that natural mathematics is always materially mediated [5]., e.g., by printed or handwritten

symbols, or by speech (which is vibrating air).
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Mathematics is a natural social activity, done by and for human beings in particular social contexts,

and thus we view the language of mathematics a particular variety of natural language among many

others, including narrative, plans and jokes. This approach is quite di�erent from attempts to \purify"

the language of mathematics, rendering it formal and without meaning, as in logical studies of math-

ematics, or rendering it purely mechanical, as in many e�orts in computer science (Donald McKenzie

[27] has made a careful social study of mechanized mathematics). In particular, we are interested in

the values that are implicit in mathematical discourse, and that get attached to mathematical objects.

Our analysis draws on traditions that include cognitive linguistics, discourse analysis (in the sense of

socio-linguistics), semiotics, and ethnomethodology. It should not be thought that we accept everything

from each tradition, nor that our way of combining them is random. If we discard a certain amount of

narrowness and dogmatism, not only are these traditions largely compatible, but they are also mutually

reinforcing in many respects, for example, in rejecting psychological reductionism, cognitivism, Cartesian

dualism, naive Platonism, and in supporting a pragmatic empiricism.

We �nd ethnomethodology [9, 35] valuable for its re�ned sensitivity to the details of interaction,

its avoidance of reductionism, its strong commitment to empiricism, and its notions of \member's

competance" and \accountability"; its unwillingness to use insights from linguistics, cognitive science,

etc. is a drawback that is easily overcome. We take \mathematical objects" to be de�ned by their being

used as such in mathematical discourse; that is, we take our warrant for this term from the way that

discourse participants speak or write. This does not imply that we (or they) are necessarily commited

to a philosophical position which a�rms (or denies) that mathematical objects actually exist in some

sense, nor does it propose reduction to some psychological basis. Rather, we follow the concepts and

methods of members, warranted by member's competance4, as recommended by ethnomethodology.

Semiotics [30, 36] emphasizes the separation and relatedness of signs and meaning, as well as (via

Saussure) the structure of complex signs, though many proponents seem to be covertly Platonist. We

have also drawn upon activity theory, with its emphases on historical development, cultural context, and

material mediation [5, 41]. Cognitive linguistics [21, 8] provides the important notions of conceptual

space and blending, and emphasizes the role of metaphor. Actor-network theory [23, 3] focuses on

the numerous, diverse actors and complex relationships needed to sustain islands of stability in social

experience, and also emphasizes the role of representations and translations. Discourse analysis [20]

focuses on the structure of linguistic units larger than the sentence, and on certain relations in the

coevolution of language and society; it also provides a window into the value systems of social groups.

In particular, we use the notions of discourse saliency, discourse strength, and discourse type; the �rst

two are discussed in Section 4 and the last in Section 7.

When we speak of the \social construction of mathematical objects," this should not be understood

in a perjorative sense. Rather, as suggested by Harry Collins [6], it is a methodological necessity for

a sociology of mathematics, as for the sociology of any science, to adopt a neutral, or even skeptical,

stance towards what is studied; if we simply accept what practitioners tell us, we are not studying what

they do. This is not to say that what mathematicians say is wrong, or that they simply make it up, but

rather that methodological skepticism is essential to an empirical study, which must include studying

what members say they do as a part of what they do5.

4
The author's professional training in mathematics includes a 1968 PhD from the University of California at Berkeley.

5
This perspective underlines the fundamental misunderstanding on which some attacks on the social sciences in the

so-called \science wars" have been based, e.g., [40], which (perhaps deliberately) confuses methodological skepticism with

a denial of the validity of scienti�c results.
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3 Some Literature

The literature on mathematics (as opposed to the literature of mathematics) is rather chaotic; much of

it is speculative, normative, political and/or irrelevant, and relatively little is based on empirical studies

of natural mathematics. I prefer not to cite examples from this depressing collection, but instead o�er

a rough typology for it. One large category consists of famous mathematicians ponti�cating, based on

their experience with very hard proofs; like the advice of Olympic athletes, this may not be very useful

to ordinary mortals, and could even be harmful. For a perhaps extreme example, as a graduate student,

I was told by an eminent algebraicist that smoking was necessary for doing top quality algebra! Another,

very large, category is written by philosophers, proposing theories of what is real. Educationists have

also written much, sometimes based on classroom experience; these papers often exhibit a strange

mixture of theories, and sometimes have hidden political agendas. Finally, psychologists have written

about mathematics, often based on laboratory experiments in highly arti�cial environments.

We now consider some research closer to our own, in having an empirical basis in natural math-

ematics. A brilliant book by Lako� and N�u~nez discusses the embodinent of mathematics [22]. Their

toolkit from cognitive linguistics includes image schemas, conceptual metaphors, and blending, but not

discourse, narrative, or sequential analyses, multimedia, or introduction and reference. There is much

good material on the historical development of certain concepts, and on metaphorical projection, and

there is an excellent analysis of mathematical concepts, which is not part of present study.

Eric Livingston wrote a classic ethnomethodological analysis of mathematics [26]. Its major example

is an excellent discussion of G�odel's incompleteness theorem. Livingston �nds (and we con�rm) that

proofs are constructed to be locally adequate for a given purpose, and in particular, are only elaborated

to the extent needed for a particular occasion. Also, proving is accountable in the sense of making clear

what it is; accountability is a natural social achievement of members. This work may be frustrating,

because its strict adherance to ethnomethodology keeps it within the world of working mathematicians,

and so prevents it from reaching what most people would call conclusions about this world.

Anna Sfard works on mathematics education, especially how new concepts are learned [38, 39],

using a mixture of methods to study mathematical discourse, including semiotics and cultural psychol-

ogy. Topics discussed include abstraction, learning, concept, metaphoric projection, and object; [38]

anticipates some points from [22].

In his social study of mechanical theorem proving for verifying software, especially safety critical soft-

ware, MacKenzie [27] discusses \cultures of proving," especially those of professional mathematicians,

and of fully formal, mechanical proof in theoretical computer science. The present paper is focused on

the culture of professional mathematicians, in which proofs are not formal, but we occasionally contrast

this with the culture that advocates formalized proofs.

The present paper is also part of a larger project on what we call \natural ethics," the aim of

which is to reveal inherent values in objects, by examining the work that is done in using them. For

example, the values embedded in user interfaces are examined in [15], focusing on some popular web

search engines. The paper [11] draws on ideas from ethnomethodology and the sociology of science,

to develop foundations for a social semiotic approach to information, with examples from computer

systems design, and to argue that values are inherent in all natural social interaction.

4 Object Introduction

Objects are introduced into mathematical discourse in a wide variety of ways, which writers and readers,

speakers and listeners, tend to take for granted. But we will show that the di�erent forms express the

values of provers, including mathematical signi�cance, mathematical di�culty, and what we will call
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ontological status (which is a kind of \degree of existence"), and we will show that these values are then

used in resolving abbreviated references to objects. Our analyses rely on a principle called recipient

design in ethnomethodology, which says that speakers tend to design what they say to minimize the

e�ort required for listeners to understand it, taking advantage of shared knowledge and values. This

implies that extra work done by speakers (or writers) generally has a purpose that relates to the work

done by listeners (or readers). Although we do not have access to the values of writers (or speakers),

we do have access to the work done by readers (or listeners) in interpreting what they write (or say),

and so the principle of recipient design gives us access to certain work done by writers, and through

that to their values. Since we can assume that writers consider this work worth doing, this allows to

infer values shared by the community of professional mathematicians.

We also rely on some concepts and principles from discourse analysis, e.g., [20, 24], including the

following: Discourse strength refers to the level of emphasis with which the object is introduced,

discourse saliency refers to the likelihood that an abbreviated reference (such as \it") will indicate the

object, and discourse scope refers to the area of text over which an introduction holds sway6, i.e., the

portion of text where the saliency of some object is high. We will see that discourse strength depends on

a variety of factors, including lexical choice, syntactical placement, and discourse placement, and that

there are some interesting relations among these discourse notions and certain values that are attached

to objects. (In general, member's competance, i.e., pro�ciency in the area of mathematics involved, is

needed to assess these factors, especially discourse scope, although these are analyst's concepts rather

than member's concepts.)

Let's begin with some examples of simple imperative sentences that introduce objects into mathe-

matical discourse:

Let N be an integer.

Assume that N is an integer.

Suppose N is an integer.

One purpose of introducing mathematical symbols like N above is so they can be used later; of course,

they are tokens, not the mathematical objects themselves. It is easy to �nd many more instances of

each of these forms, where \N" and \integer" are replaced by other tokens, such as \G" and \group,"

and of course many similar examples can be found in our data.

If mathematics is viewed as a purely formal activity, then the above introductions are equivalent;

thus, in typical formalizations (e.g., in the type theory of Coq [7], or of Mizar [29]) they would all appear

in the same form, as a declaration of a variable N of type integer. But natural mathematics is not a

purely formal activity, it is a human activity, and natural mathematical discourse involves many subtle

distinctions. For example, the \let" form above is stronger than the \assume" form, which in turn is

stronger than the \suppose" form, in that these forms express progressively more doubt. Passive forms

of introduction, such as \Let a group G be given," are still weaker. We will see other examples of such

hierarchies.

Sentences that begin with \let" are not very common7 in ordinary English discourse, so it is inter-

esting to consider why they are so common in mathematical discourse. A phrase of the form \Let X be

a Y " perhaps takes a magisterial aura through association with one of the most famous phrases in the

Bible, \Let there be light," which is said by God, and clearly involves creation. The phrase \Let it go" is

somewhat common in ordinary discourse, but since it does not involve the verb \to be" it has a di�erent

character. The phrase \Let it be," which is the title of a famous Beatles song, is somewhat common in

6
In computer science, the term lexical scope is used for the portions of a computer program's text within which a

declaration is active. In contrast to natural texts, this notion has a completely precise de�nition for each programming

language.
7
However, sentences that begin with \let's" or \let us" are common, and can even be found in this paper.

5



New Age and other circles, and also seems not closely related. Sentences like \Let the games begin" or

\Let the good times roll" are performative speech acts in the classic sense of Austin [1], in that they

ritualistically call forth the condition described (the �rst of these begins the Olympic games). Getting

closer to the usage in mathematics, we can imagine8 someone saying \Let T be the table" as they go

over a diagram showing the placement of furniture in a room, and maybe even \Let T be a table" as

they draw it on the paper. Such uses are certainly related to those in mathematics, and highlight the

baptismal aspect, since many uses of \let" give names to objects that (implicity) already \exist." Note

that the implicit subject of the verb \let" is \I " or \we," where the latter has some connotation of

the so-called \Royal we," where a monarch or other important person uses �rst person plural pronouns

for him- or herself. In summary, phrases of the form \Let X be a Y " or \Let X be Y " confer a name,

have an association with creation, and have a God-like or royal connotation, all of which help to make

mathematical objects appear real. We will argue in Section 8 that what such locutions call forth is a

conceptual space, in the precise sense of cognitive linguistics.

Although all the above introductions occur in main clauses, there are also many examples where

introductions occur in a subordinate clause, which may come before or after the use of the object:

Given an integer N , ...

Supposing that N is an integer, ...

Assuming N is an integer, ...

For N an integer, ...

If N is an integer, ...

..., where N is an integer.

..., with N an integer.

..., assuming N is an integer.

..., provided N is an integer.

A general principle in discourse analysis is that something placed in a main clause is stronger than

something placed in a subordinate clause; more generally, the more deeply embedded the phrase in

which something appears, the weaker it is. In addition, introductions that come before use are stronger

than introductions that come after. Other forms of emphasis include repetition, italicization (or other

font changes), color changes, and in spoken language, certain changes in volume, spacing, or intonation.

The scope of introductions tends to be much more carefully controlled in mathematical discourse

than in ordinary discourse. For example, phrases like

Throughout this chapter, ...

In this section, ...

Within this proof, ...

In this lemma only, ...

are often used to qualify object introductions. See also the discussions of scope earlier in this section,

and in Section 5 for assertions.

All the introductions above identify a signi�er, such as N , with what is signi�ed. Although this is

the most common case, there are also many introductions that indicate a separation between signi�er

and signi�ed, such as the following:

Let N denote an integer.

..., where N indicates an integer.

..., where N ranges over the integers.

8
These items are not in our dataset.
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The identi�cation of signi�er and signi�ed contributes to the appearance of the reality of the object

involved, since the signi�er is certainly real, e.g., ink on paper, chalk on a blackboard, or sound in the

air. Therefore the above phrases have less strength than the more direct forms.

Objects can also be introduced with some assumptions, as in the following,

Let N be a positive integer.

Suppose P is a prime greater than N .

Assume that G is a commutative group.

This is a slight extension of the syntactic form for basic introductions.

Objects are not always given a symbol when they are introduced:

We will operate over a �xed real closed �eld.

We work in an arbitrary Hilbert space.

Introductions with forms like this give their objects a larger scope and thus a higher saliency than those

previously discussed, because it is clearly intended that they hold over a large segment of discourse.

Note that such introductions could also include a symbol, as in

We will operate over a �xed real closed �eld R.

We work in an arbitrary Hilbert space H.

It is not necessary for objects to be introduced as speci�c individuals, since they can instead follow

some general convention that has been explained earlier, such as:

We let capital letters denote sets.

We will use the notation ~a;~b; ::: for vectors.

One can then write formulae using the symbols that these conventions justify without explicitly in-

troducing the symbols. Introductions like these indicate a greater importance for the class of objects

involved, but not necessarily for objects of the class, each of which should be judged from its own

introduction.

For a mathematician, assertions and proofs are also objects that can be referred to, combined with

other objects, and manipulated in various ways. So it should be no surprise that these are introduced

into mathematical discourse in ways that are similar to other objects; we give examples and discuss the

values that are attached to them in the next section. Actually, results and proofs are in general much

more important in mathematics than objects, which after all are only introduced in order to facilitate

stating results and constructing proofs. In particular, conditional assertions are extremely common,

which helps to explain why introductions involving \if," \assume," and \suppose" are so common: they

set up the conditions under which some assertion is to hold. Often these introductions appear in clauses

that are subordinate to the clause of the assertion, though this is certainly not always the case.

In general, the stronger an introduction, the larger is its discourse scope, and the more important

is the object involved. We have already seen some factors that e�ect discourse strength, including

syntactic features like depth of nesting within phrases, and discourse features, such as placement at the

front of a major unit; the next subsection will discuss how lexical choice can also be a factor.

Let us call the mutual correlation of discourse scope, discourse strength, and importance, the prin-

ciple of proportion9. For example, a \let" introduction at the beginning of a proof is likely to hold

9
Such principles are neither normative nor descriptive, but rather are conventional, in the sense that participants

are aware of them, and make appropriate use of them, including orienting to exceptions; this gives a precise meaning to

the phrase \honored in the breach." Note also that this asserts a mutual correlation between two factors, rather than a

one-way causal relation.
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throughout the proof (unless it is speci�cally revoked), and to introduce an important object. On the

other hand, if an assertion in some proof involves an index i that ranges from 1 to n, then its intro-

duction typically appears in a subordinate phrase before or after the assertion, rather than near the

beginning of the proof, i.e., in a form like

Let xi 2 Si for i = 1; :::; n :

instead of a stronger form preceeding the assertion, such as

Let i be an index ranging from 1 to n.

which would imply a larger discourse scope (though the situation could be di�erent if there are many

formulae indexed over that same range). In many cases, the formula is in a subordinate clause, so that

the introduction is two levels down, and thus quite weak10. The systematic use of such conventions,

which parallel those of ordinary conversation, contributes to the appearance of reality for the objects

involved.

Note that such a local introduction could locally \override" or supercede an introduction having a

more global scope, so that an object can have a very high saliency within a limited scope created by a

speci�c introduction. For example, in a text that uses complex numbers, i would refer to
p
�1 outside

the limited scope of the �rst introduction for i as an index above. This implies that the scope of an

introduction may be discontinuous, rather than a continuous segment of text. One might argue that

instead both scopes are continuous segments that overlap, but this runs contrary to the fact that it is

considered very bad form to have the same symbol refer to two distinct introductions within the same

assertion.

Instead of being denoted by a single symbol, objects can be denoted by complex symbols, as in:

angle APB

the integer a� b

the quotient group G=H
Pn

i=1 i
2

@
@y

@
@x

R y
0

exz+1

x+z
dz

We see that an accompanying descriptive phrase in English is optional, and that all of these except

perhaps the �rst have at least a connotation of doing a construction, such a subtraction, quotienting,

summing, di�erentiating, integrating, etc. Note also that these constructions can be almost arbitrarily

complex (e.g., one �nds formulae that take a whole page of text, or even more). However, these

constructions may be very complex and abstract (as opposed to relatively simple concrete constructions

like addition), and they may even rely on non-constructive existence theorems.

4.1 Ontological Status

The main activity of professional mathematicians is not exposition, but exploration, in which one often

does not know whether or not certain objects exist. Phrases like

and so we �nd ...

thus we discover ...

reect a metaphor of exploration, rather than of creation, even though they occur in exposition. How-

ever, creation metaphors often do occur in constructions, as for example in
10
Note that this discussion relies heavily on syntactic structure.
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We drop a perpindicular.

Now bisect angle APB, and extend the bisector ...

The language of construction is pervasive in traditional Euclidean geometry, but is also found elsewhere,

for example, in the very common use of \show" as synonym for \prove," as in phrases like \we now

show that ...". Although less common, \demonstrate" has a similar character.

The reader may notice that ...

Now we observe that ...

thus we can see that ...

if you look into it, you will see ...

Verbs like \see," \observe" and \notice" are often used to introduce results, and have a avor of

construction, which gives them a greater reality, and hence a greater sense of importance. Objects that

are introduced in constructions, or that are introduced using a rhetoric of construction, have a higher

ontological status than those that are introduced in a more logical mode.

We argued above that objects introduced using verb forms like suppose, assume, and granting have

a greater level of uncertainty than objects that are introduced using let, etc.; we will use the term

ontological status to to refer to this particular value that is associated to objects. Objects with a

greater ontological status have a greater certainty, and as a result have a greater appearance of reality.

Lower levels of ontological status often occur in proofs by contradiction, in which a thing assumed

to perhaps exist is shown not to really exist. Here is a simple example:

We will show that there are no even primes greater than 2.

Suppose that p is such a number.

Then p = 2n for some n > 1.

Therefore p is not prime.

Because such proofs can be very confusing to newcomers, it is worth considering how to make them

easier to follow. Here is a version of the same argument with a more dramatic introduction, and also

an explicit indication that the proof is over:

I claim there are no even primes greater than 2.

Suppose that p is such a number.

Then p = 2n for some n > 1.

Therefore p is not prime.

QED

The rhetoric of truth and reality is used when a proof succeeds, i.e., \truth" is the mathematician's

way of describing what happens happens in properly accountable proving. But this rhetoric breaks

down when things are not going so well11. For example, phrases like

I'm not so sure about this, but if ...

Maybe we could just assume it and carry on.

Well, what if we try it this way: ...

Maybe there's some way to ...

I wonder if we really need that?

reect uncertainty, and reduce the ontological status of any objects to which they refer. We have also

found a strong correlation between the force of such expressions, and the importance of the result being

undermined. For example, we see stronger language, including strong lexical items, in the following

cases where an attempted proof has completely broken down:
11
Unfortunately, we have much less data on such phenomena, so our conclusions are somewhat limited.
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I just can't �gure it out.

Sh**, it doesn't work!

I think it's false now.

No, that's not it.

Negatives seem to feature prominantly in the discourse of failure, where the ontological status is of

course very low, or even zero when an assertion is proved not to hold, e.g., by giving a counter example.

5 Assertion Introduction

As already noted, assertions may be considered objects, and much of what we observed about objects

applies to assertions; however, assertions are also treated di�erently from objects in some ways. For

example, the most important results in a book or paper are often introduced in a separate paragraph,

headed by keywords that include \Theorem," \Proposition," \Lemma," and \Fact." Note that these

form a hierarchy which encodes the mathematical importance assigned to results. Assertions in this form

are often numbered sequentially, as are de�nitions and sometimes other blocks of text. The numbering

scheme may start over in each chapter of a book or section of a paper, and may include the chapter or

section number, giving rise to forms like \Theorem 7.4" and \De�nition 2.1," instead of \Theorem 27"

and \Lemma 18." More elaborate forms are also possible, such as \Proposition 8.6.3." In books and

papers, formulae are often enumerated using forms like

[6.21] e�i = �1 .
In oral mathematics, simple numbering schemes may be used for sets of rules, axioms, and similar

homogeneous collections, but more elaborate schemes, like those just described, do not appear.

Very important results are often given proper names, e.g., \the Prime Number Theorem," \Zorn's

Lemma," \Hilbert's Nullstellensatz," etc., and these appear in both written and oral discourse. As with

other objects, formulae can also be given short names when they are introduced,

Let F be the following formula, ...

Let F be the above formula.

Let F denote the following formula, ...

Let F be the formula .....

where we use ..... to indicate a gesture, such as pointing. (This is our �rst example of notation for

multimedia discourse, which in general is very di�cult to notate with precision as great as that of purely

linguistic discourse.) The considerations discussed in Section 4 also apply here, supporting notions of

discourse strength and ontological status for assertions, though it is clearer to speak of a \truth status"

for assertions, than of an ontological status. The discourse strength of assertions is determined in much

the same way as for objects, mainly on the basis of syntactic and discourse structure. A simple example

appears in the proofs by contradiction in Section 4.1, which each begin with an assertion introduction;

here the second introduction is stronger, due to its stronger syntactic form.

Assertions are also given another value by mathematicians, which measures how di�cult they are

to prove. This is not only a very basic (though somewhat covert) value in the mathematics community,

but it also provides useful information for proof readers, because it can help in knowing when the proof

of some assertion is �nished, and more generally, it can help in navigating proof structure, which is

often di�cult for complex proofs.

Inside a proof, an assertion may be \open" or \closed," which respectively mean that it is in the

process of being proved, or that it has been proved and is available for use in proving other assertions;

we will call this the proof status of an assertion. The situation is actually more complex, because an
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assertion may be used before it is proved, provided that its status is made clear, that it really is proved

later on, and that no circularities are involved12. Moreover, in proofs that are still under construction

(i.e., in mathematical research), the status of many assertions is often somewhere between open and

closed. This implies that we need several di�erent notions for assertions that are analoguous to discourse

scope for objects. One of these is the portion of text within which an assertion is closed, or is treated as

closed; another is the portion of text within which an assertion is open; another is the portion of text

within which an assertion is undergoing proof; and still another is the portion of text within which an

assertion is salient at all, independent of its proof status. Let us call these the closed scope, open

scope, proof scope, and salient scope of an assertion. For a given assertion, its salient scope will

contain each of the other three. These notions can help us understand how proofs are navigated, noting

that navigation can be di�cult for complex proofs.

The following further examples of assertion introduction are ordered by their discourse strength,

We claim that ...

We will prove that ...

It follows that ...

Observe that ... Notice that ... Note that ...

It can be shown that ...

The �rst two introduce new open assertions, whereas the remainder introduce assertions that are to be

considered closed (either through a subsequent short justi�cation, or through a missing justi�cation that

the reader is expected to supply). All of these are stronger than the following single word introductions,

Therefore, ... Then, ... Thus, ... Hence, ... So ....

which each introduce new closed assertions (or assertions that are regarded as closable by the reader),

and which again are ordered by their strength.

It is also of course possible to introduce assertions in subordinate phrases, for example, beginning

with words like the following, which again are ordered by strength,

if, where, when, provided, granting

in that these words suggest progressively more doubt, although this is used to express their discourse

status rather than their truth status. The words in the list \therefore," \then," etc. above can also be

used to introduce assertions in subordinate clauses; these have a lesser discourse strength than those in

the list \if," \where," etc.

It is well known to professional mathematicians that phrases like

It is clear that ...

One can easily see that ...

Obviously ... Certainly ... Evidently ...

A little calculation shows that ...

The reader can [easily] check that ...

often hide a tedious or tricky calculation. This convention can be very irritating to those outside that

narrow circle, inlcuding students. Conventions like this of course serve to solidify the boundaries of

a professional group, but they also reveal its values, in this case, a negative value that is placed on

calculcation, with a corresponding positive value placed on more creative aspects of proofs. This is

quite opposite to the values of most non-professionals, who would in general prefer easy proofs, and

would rather see more details of calculations.

12
So called \natural deduction" proofs enforce the discipline of proving assertions before they are used; but in fact, this

is unnatural, and is often violated in natural mathematics.
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There is a principle of proportion for assertions analoguous to that for objects, asserting the

mutual correlation of salient scope, discourse strength, and mathematical importance. Again, this

principle is neither normative nor descriptive, but rather is a convention, to which members orient,

including in cases where it does not hold (see footnote 9). For example, named results are stronger and

therefore assumed to be more important and to have larger scope than unnamed results. An example

from our data is discussed at the end of the next section.

6 Reference

Mathematical discourse builds on ordinary discourse, and in particular, it builds on the conventions

of ordinary discourse, including the modes of reference that are employed in various discourse types.

Ordinary discourse presupposes concrete objects, and requires the listener (or reader) to determine the

concrete referents of words and phrases such as

it, that, this,

that one, the other, the last one

All these phrases occur in mathematical discourse, but mathematical terms may also occur, as in

this formula, that integer,

the other variable, the previous lemma

In addition, mathematical discourse has some more specialized conventions for reference. For example,

if a formula has been named \[6.21]", then that name can be used to refer to the formula later, or even

earlier, in the text; an abbreviated form like \formula 21" can also be used within the scope of \6," which

could be a section of a paper or a chapter of a book. Similar reference conventions apply to theorems,

de�nitions, and whatever else has been numbered in a similar way in a text. These conventions refer to

the large-grain structure of texts, rather than the structure of proofs, except insofar as this might be

reected in the text structure.

The extreme rarity of such precise forms of reference in ordinary discourse compared to their relative

frequency in mathematical discourse reveals the importance that mathematicians attach to precise

reference to mathematical objects, as well as to their great sensitivity to scope in mathematical discourse.

It is interesting to notice that chains of reference can also occur, as in

the formula that we used to prove this one

the proof of the previous lemma

the second integral in the third formula below

It is important to notice that the values attached to mathematical objects are used in resolving later

references to those objects in mathematical discourse. For example, phrases like

The proof is now reduced to ...

The desired result now follows.

require us determine which \proof" and which \desired result" are meant; their referent will be whatever

un�nished proof or open assertion has the greatest current discourse salience, which is in part determined

by their mathematical di�culty and signi�cance.

Introduction can be rather complex in multimedia discourse:

Consider this formula.

Therefore ...

What we want to prove is ...

The last formula with x replaced by y.

The last formula with this substituted for x.

This formula, with this and that reversed.
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where the underlines indicate a gesture, writing on the board, writing plus gesture, etc.; speech and

writing and/or gesture can be simultaneous in forms like these. Also, values are often indicated in

complex ways using body language. Similar phenomena occur when assertions are referenced:
Let's do this one �rst.

So all we need now is to prove that one.

The formula that used to be here.

The sequential organization of discourse has perhaps been studied with the greatest care and preci-

sion in the branch of ethnomethodology known as conversation analysis [35]. In particular, conversation

analysis has studied introduction, reference and re-reference. One general principle is that references

are constructed to take the least e�ort and still be e�ective [37], so that di�erences from such optimal

phrasings must be doing some work in addition to reference, such as imparting additional emphasis, or

recalling shared values (see footnote 9). For example, the phrase \by Cayley's theorem (Theorem 18)"

gives two di�erent references to the same assertion, one of which is a proper name; this redundancy

gives extra strength to the reference, and therefore the principle of proportion leads us to assume that

this particular use of Cayley's theorem is important. Another result is that references to an object

can be simpler for each of a series of references, because the saliency of the object rises the more it

is referenced [37], as well as closer to a previous reference. For example, the �rst reference to a low

salience object might be rather elaborate, but soon after that, it can be referenced using just \it" or

\that". Conversation analysis has also studied the repair conventions used in ordinary conversation

(i.e., the ways of correcting speech on the y), and it would be interesting to see how these apply to the

correction of mathematical speech.

6.1 Abstraction

We can get deeper into the nature of mathematical objects by examining the nature of mathematical

abstraction. Nearly all mathematical objects are abstract in the sense that there are multiple repre-

sentations, which are considered to be \the same," or more formally, equivalent, as in the following,

where each line contains di�erent terms, which are considered \equal" in some sense:

[10; 000; 000]2 = [1024]10
2

6
= 1

3

:99999::: = 1 = 1:0

0 + 5 = 5

x� y = y � x

Each notion of equality is di�erent. The �rst concerns the representation of an integer in base 2

(binary) and base 10 (decimal). The second concerns the equality of fractions, while the third line

concerns real numbers. The last two concern the results of operations on numbers. In each case, an

equivalence relation is represented by the equality sign, which asserts that the relation holds between two

expressions. This is very typical in mathematics, and serves to reinforce the appearance of existence of

an \ideal" entity which is \represented by" all the terms. Plato's famous cave, in which only the shadows

of \real objects" can be seen, but not the objects themselves, seems an almost perfect metaphor for this

situation, including the fact that there is no evidence for existence of the \real objects" themselves13.

13
Contrary to what many people think, even in pure mathematics there is no such thing as the ideal number one

itself. Rather, the number one is constructed or represented in various ways in di�erent contexts. For example, in set

theory, it may be constructed as the set containing the empty set, \f;g" (there are also other constructions). In Peano's

axiomatization of the natural numbers, it appears as the term s(0). Among the fractions, it appears as the set of pairs of

integers (a; b) with a = b 6= 0. The latter is an instance of a common trick, which is to \divide by" the equivalence relation

that underlies the equality sign used for some particular class of representations.
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It seems that abstraction, in the sense of (often implicit) equivalence relation, may be the essence of

mathematical objects.

The work of calculation often consists of producing a sequence of di�erent representations connected

by the equality sign, as in the following:

1

2
+ 1

3
+ 1

4
=

6

12
+ 4

12
+ 3

12
=

13

12
= 1 1

12

Even though the aim is to reach the last term, one tends to think that every term \represents the same

thing," i.e., is a reference to the same \abstract" mathematical object.

There is another sense of the word abstract, according to which a number of objects are regarded

as \instances" of a single \more abstract" object (which itself is likely to be abstract in our �rst sense);

this also can be seen as a relation, though not in general an equivalence relation. For example the

equations x+y = y+x and u+v = v+u are equivalent14, the abstract object here is \the commutative

equation", and the equations 4 + 5 = 5 + 4 and 8 + 11 = 11 + 8 are two instances of it, obtained by

substituting particular integers for the variables.

7 Proof Structure and Narrative Structure

We �rst explain the important notion of discourse type. This is a collection of conventions (in the

sense of footnote 9) for organizing and interpreting certain units of language. These conventions include

ways of opening and closing a unit, and for connecting clauses within a unit. Usually there is a primary

type of clause and a default connective for such clauses, which can be omitted without changing

the interpretation, and which represents the most important way to connect clauses in this discourse

type. There may also be other conventions. A discourse unit is an instance of a discourse type, e.g.,

a particular text, such as the small proof by contradiction in Section 4.1. The proof and narrative

discourse types are discussed below. In [33], Sacks already noted that narrative structure is governed by

conventions, rather than rigid rules as in Chomskian formal grammar. Narrative is arguably the most

basic of all discourse types. Other discourse types include plans [25], explanations [18], jokes [34], and

command and control [17].

Our primary interest in this paper is the proof discourse type; it is more complex than other types

that have been studied. Proofs open with a formal announcement of what is to be proved, marked for

example by \Theorem:", or in a sentence such as \We will prove that ...". Proofs are typically closed

with a formal symbol such as \2" or \QED", or with a sentence such as \And thus we are done" or \And

that concludes the proof." There are two kinds of clause, for proof steps and for introductions. The

default connective for proof steps is \therefore," \thus," \hence," or some other synonym; but unlike

most discourse types, this default connective is not usually omitted. However, the default connective

for introductions, \and," is often omitted. Other conventions for the proof discourse type have been

discussed earlier in this paper, including ways to introduce, name, and reference objects. There are also

conventions for indicating logical dependencies among proof parts, but we do not investigate them in

this paper.

Proofs are presented linearly, i.e., as a sequence of steps, even though the underlying mathematical

structure is often non-linear; the same is true of stories, which typically give a sequential account of

concurrent interacting events and persons, through the use of interleaving threads; there may also be

14
The relevant relation says that there is a one-to-one correspondence between their variables, i.e., they are \the same"

up to renaming of their variables.
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ashbacks and ashforwards. A classic structural theory for the narrative discourse type has been given

William Labov [20] (re�ned by Charlotte Linde [24]), saying that stories have:

1. an optional orientation section at the beginning;

2. a sequence of narrative clauses for actions, which are interleaved with

3. evaluative material giving reasons for actions; and

4. an optional closing section.

The orientation section may set the time and place, and introduce some characters. For example, fairy

tales prototypically begin with \Once upon a time." The narrative clauses are generally in the narrative

past tense, and the events that they describe are presumed (unless otherwise indicated) to occur in the

order that they are presented; this principle is called the narrative presupposition. For example, in

\he came, he saw, he conquered," the narrative presupposition tells us that these three clauses refer to

events that occurred in the indicated order. The default connective here is \and" or \then," because

these can be substutited for the missing connective without changing the meaning, giving \he came,

and he saw, and he conquered," or \he came, then he saw, then he conquered." The form without

connectives is more usual, and the use of either of the other two forms would indicate some additional

emphasis. Evaluative material may appear in a dependent clause, or in unexpected syntactic or lexical

choices, such as repetition or swear words; evaluative material is a rich resource for uncovering values.

Narrative structure serves to support the appearance of reality for mathematical objects, because it is

a familiar form that ordinarily involves concrete objects and events.

The discourse structure of proof appears to be derived from that of narrative, because echoes of

narrative structure are found in proofs. For example, the primary default connective in proofs is \then"

(with its synonyms like \thus" and \so"), although with the meaning of logical implication rather than

temporal succession. That \then" has originally a temporal character is shown by its appearance in

phrases like \now and then" and \and then again...", and \then" can also be used in proofs to indicate

temporal ordering, for example in phrases like \then we will show that..." In addition, words like

\next" and \and" are also used in proofs to indicate sequential ordering. Although the primary default

connective can be omitted, it sounds awkward. But as in narrative, temporal connectives can be omitted

in proofs, which explains why it is unusual to omit the logical implication connectives. Notice that the

conjunction \and" also has both a temporal and a logical meaning, exactly parallel to \then". We

can illustrate these ideas with modi�ed versions of the proof by contradiction from Section 4.1, �rst a

discourse unit with no connectives:

Suppose p is an even prime greater than 2.

p = 2n for some n > 1.

p is not prime.

QED

Now let's see it with \and":

p is an even prime greater than 2, and

p = 2n for some n > 1, and

p is not prime.

QED

Clearly, the proof sounds better using \then" and its synonyms:

Suppose p is an even prime greater than 2.

Then p = 2n for some n > 1.

So p is not prime.

QED
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Notice that understanding the �rst of the three proofs above involves an analog of the narrative pre-

supposition, because we naturally presuppose that each clause follows from what comes before it; this

highlights the basic importance of inference in proofs. However, proofs can also use a converse presup-

position, in which the default connective is \because" or \since" or a synonym, instead of \then."

The use of the temporal connective \then" for implication in proofs is part of a general pattern,

other examples of which are \it follows that ..." and \after which ...". This is an instance of what George

Lako� and Rafael N�u~nez [22] call a conceptual metaphor; it maps from an image schema for temporal

succession into the more abstract domain of logic (the notions of image schema and metaphor are

discussed in Section 8 below). Let us call this the logical consequence is temporal succession

metaphor. Notice that the logical meaning of \since" in proofs is also part of this pattern.

A common complaint by non-mathematicians about proofs is that their structure is not clear. For

example, a lemma may be stated well before its role is (or can be) made clear, or a seemingly unrelated

claimmay be proved before drawing a surprisingly short proof of the main result from it. Mathematicians

enjoy these sorts of tricks, but outsiders do not usually share their pleasure. This brings out a further

value of the community of professional mathematicians, which is to be clever.

We have already noted that traces of narrative occur in proofs. Another research project has explored

the hypothesis that a careful use of narrative structure can make proofs easier to follow. One inspiration

has been a video tape of an explanation of the operation of a mechanical theorem prover, in the form

of an epic narrative of proof attempts by the program; it is rather like the narratives described by

Joseph Campbell [4], in which a hero overcomes a series of obstacles. The hypothesis has been tested

(anecdotally, not statistically) in a web-based proof display system that we have developed [16]. Each

proof has a homepage which serves as an orientation section; evaluative material (with motivation,

explanations, etc.) is interleaved with proof steps, which are presented in the converse order (unless

the prover speci�es otherwise); there is also an optional closing page, which can summarize what has

been proved and what can be learned from the proof [13]. Feedback received from students and non-

professionals has been very positive, although professional mathematicians often consider the problem

of improved exposition to be uninteresting.

Much more could be said on the topics of this section, for example, about proof navigation, but this

would distract from the core of what we wish to say, and so is better left for a future paper.

8 Cognitive Linguistics

In their pioneering book [22], George Lako� and Rafael N�u~nez demonstrate in detail how mathematics

is grounded in everyday experience; in particular, they demonstrate that the language of mathematics

contains many metaphors that are based on image schemas. Before explaining these notions, we �rst

explain a foundational notion, that of conceptual space. The original notion (e.g., in [8]) says that a

conceptual space consists of some objects and some relations among them15; to this, I would now add

the concepts and methods, in the sense of ethnomethodology, that are relevant to these objects, and

sometimes an evolving local state, as is needed for example by geometrical constructions16. Whenever

a mathematical object is introduced, the conceptual space associated with objects of that type comes

into the discourse with it. For example, the introduction \Let G be a group" imports group theory

into the discourse (or at least whatever group theory is known and relevant at this point). Among

things imported might be the concept of a subgroup, and methods for proving things about groups, for

example, by using the Sylow theorems.

15
As noted in [12], this makes conceptual spaces a simple special case of �rst order theories in the sense of mathematical

logic; this observation suggests generalizing the notion to include constuctors and types for terms, as was done in [12].
16
This is similar to object oriented programming in computer science.
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An image schema is a conceptual space that arises from some innate sensory-motor schema, i.e.,

from human perception and coordinated action in the world17. One example is the container image

schema, which involves an inside, an outside, a boundary, and the possibility of things being inside

or outside. Image schemas have a perceptual basis, and an associated conceptual space; a particular

instance of a schema, arising when it is used, may be further enriched.

A metaphor is a mapping from a source conceptual space to a target conceptual space. For

example, the sets are containers metaphor, which underlies much of elementary set theory, maps

from the (conceptual space of the) container image schema to (a conceptual space for) sets; this map

takes things inside a container to elements of a set. Another mathematical metaphor is numbers are

points on a line, which maps from the (conceptual space of the) image schema points on a line

to a conceptual space for the real numbers. Mathematical sentences understood using this metaphor

include \x is between 5 and 6," \x is below 12," \y is close to x," and \x is far from 0." The phrase

metaphoric projection (of or from S) is often used, where S is the source of a metaphor.

The use of metaphors based on image schemas supports the reality of mathematical objects in the

target spaces, by relating them to our experience of being in the world. This observation helps to

explain the applicability of mathematics: Sensory-motor schemas work in the world because they were

selected over millions of years of evolution; therefore language that is based on them also works in the

world. From this, we see that the apparent mystery of the applicability of mathematics depends on our

accepting that mathematics is transcendental, and it disappears once we realize that mathematics has

been grounded in real world experience from the very beginning. Several other arguments against the

traditional transcendental view of mathematics may be found in [22]. Most mathematicians probably

realize that the reality of mathematical objects is an illusion, but they are trained not to admit it, and

may even be told that believing in this illusion will help them do better mathematics!

Lako� and N�u~nez also demonstrate that conceptual blends, and in particular, blends of metaphors,

play a very important role in mathematics, but we will not discuss this here; see [12] for a category

theoretic treatment of blending. The book [22] contains many further concepts and interesting examples,

and the reader is encouraged to consult it.

9 In Conclusion

This paper reports an empirical study of mathematics as social activity. Our data is natural mathe-

matics, in the sense of actually observable proof events. A number of results appear to be new. Proofs

have been proposed as a new discourse type, and aspects of natural proof structure have been described,

including the introduction of, and reference to, mathematical objects. A large range of linguistic de-

vices have been shown to reinforce the appearance of reality for mathematical objects, including the

use of metaphoric projection from image schemas, and the metaphoric projection of the narrative pre-

supposition to entailment. We have shown that the reality of mathematical objects is constructed and

sustained by work done in discourse; it is not a self-evident objective fact. This work includes the

use of conventions from ordinary discourse, which presume ordinary concrete objects, as well as object

introduction and reference, narrative, image schemas, metaphors, blends, and abstraction.

Another kind of work done in mathematical discourse is the �nely nuanced assignment of values to

objects; these values are then used in resolving discourse references to mathematical objects. We have

found evidence for the values of mathematical signi�cance, di�culty, and ontological status. It seems

17
This de�nition di�ers from that of Lako� and N�u~nez in making the conceptual space explicit, and thus emphasizing

that it is a model of a natural phenomenon constructed by analysts, rather than the phenomenon itself. This seems

appropriate because conceptual spaces cannot be directly apprehended, and therefore must be inferred, and it has the

advantage of avoiding the appearance of covert Platonistism.
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that the work done to make values invisible is exactly what renders them visible to analysts.

Our analysis of values and work in proofs provides a basis for infering the values of provers, that is,

of the community of professional mathematicians. These values include clarity of reference, clarity of

organization, di�culty of proof, mathematical signi�cance, concision, and surprise. That clear reference

is important is evident from the unusual, multiple, precise mechanisms for reference that we have

documented in this paper. Similarly, the importance of organization is inferred from the mechanisms

used to support it in proofs, though we have not explored this as thoroughly as we did reference.

However, we have discussed one important mechanism, the way that the ontological status value assigned

to assertions helps readers understand proof organization. Di�culty of proof is a major value attached

to assertions, as is mathematical signi�cance. The importance of concision, and even austerity, can be

seen in the extensive use of symbols to denote objects, as well as in the paucity of explanation. We

have not previously argued for the importance of surprise, but it is easily seen in the way that many

proofs end, sometimes \pulling a rabbit out of a hat," and sometimes leaving the reader to put things

together after an abrupt \QED."

Our results also support some conclusions about the philosophy of mathematics. First, Platonism

is false, in the sense that natural mathematics is always materially mediated, embodied, and situated.

Although this does not exclude the possibility that Platonic objects have some reality of their own,

it does exclude their having any material embodiment or practical e�ect, so that it is impossible to

observe any causal role for ideal Platonic objects in natural mathematical discourse. On the other

hand, Platonism is true, in the sense that natural mathematical discourse, and mathematicians, treat

mathematical objects as real, and moreover, mathematical objects also presumably correspond to real

events in the brains of mathematicians.

Formalism is the view that mathematics is just the manipulation of symbols according to certain

rules, with no inherent meaning at all. This is false, because natural mathematical discourse is very in-

formal, value laden, very expressive (even dramatic), and grounded in real experience (the last assertion

is extensively argued in [22], based on image schemas, metaphors, etc.).

The results of this paper have signi�cant implications for mathematics education. First, we have seen

that natural mathematics is not routine: natural proofs are \site speci�c," and in particular, are only

elaborated to the extent needed at a particular time and place. This implies that extreme forms of the

\back to basics" movement, which rely exclusively on memorization, routinization, etc., are misguided.

On the other hand, grounding everything in practical experience is also misguided, because it does

not allow for abstraction, which we have seen is one of the most fundamental features of mathematics.

Finally, since the philosophical position of formalism is wrong, teaching mathematics as pure formality

is also misguided; it leaves out the vital life force of mathematics.

Although not directly supported by the data used in this study, it seems likely that similar points

could be made about the application of mathematics to other �elds, as well as about �elds that rely

extensively on mathematics, such as physics, chemistry, and engineering. For example, concepts like

force do not have an actual Platonic existence, but rather are parts of complex models that have been

constructed by physicists. Also, careful readings of physics texts will no doubt reveal values of the

physics community, and it is likely that these values will be similar in many ways to those of the

mathematics community, though di�erent in other ways.

This paper is an early attempt to apply empirical methods (discourse analysis, ethnomethodology,

and cognitive linguistics) to natural mathematics, so some gaps, omissions, and even errors are to be

expected; we hope that this will inspire further work, since there is much more to be done, and there are

important applications, not the least of which is secondary mathematics education, which is currently

plagued by highly politicized polarities.
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